Amgen Inc., South San Francisco, CA, USA.
Contemp Clin Trials. 2013 Sep;36(1):276-83. doi: 10.1016/j.cct.2013.07.012. Epub 2013 Aug 3.
Interval censoring occurs frequently in clinical trials, but is often simplified to a right censoring problem because statistical methods in this area are under developed. It is recognized that analyzing interval censored data as right-censored data can lead to biased results. Although statistical methods have been developed to estimate survival function and to test hypothesis, estimating hazard ratio (HR) in a proportional hazards (PH) model for interval censored data remains as a challenge. Semi-parametric PH model was developed but difficult to implement, and thus rarely used in practice. Parametric PH method can be easily implemented but received little attention in practice because the impact of mis-specifying baseline hazard function on HR estimate was not well understood. We examined the performance of parametric PH models, using 3 baseline hazard functions: exponential, Weibull, and a 10-piece exponential function, under different underlying data distributions and censoring schema, through an extensive simulation study. Data were generated from 6 different models representing a range of possible scenarios in clinical trials. The simulation study revealed that mis-specifying baseline hazard function had little impact on the HR estimates. Robust estimate of HR with little bias and small mean square errors (MSE) were obtained using a PH model with a Weibull or 10-piece exponential function approximating baseline hazard function. Bigger bias and MSE were observed when using an exponential function to approximate a complex baseline hazard function. Examples are included. Based on these findings, we advocate the use of parametric PH models for the analysis of interval censored data.
区间删失在临床试验中经常出现,但由于该领域的统计方法尚未得到充分发展,通常被简化为右删失问题。人们认识到,将区间删失数据分析为右删失数据可能会导致有偏的结果。尽管已经开发了统计方法来估计生存函数和检验假设,但在比例风险(PH)模型中估计区间删失数据的风险比(HR)仍然是一个挑战。已经开发了半参数 PH 模型,但实施困难,因此在实践中很少使用。参数 PH 方法易于实施,但在实践中很少受到关注,因为对 HR 估计的基线风险函数误指定的影响尚未得到很好的理解。我们通过广泛的模拟研究,使用 3 种基线风险函数(指数、Weibull 和 10 段指数函数),在不同的基础数据分布和删失方案下,检查了参数 PH 模型的性能。数据是从 6 种不同的模型中生成的,这些模型代表了临床试验中可能出现的各种情况。模拟研究表明,基线风险函数的误指定对 HR 估计的影响很小。使用 Weibull 或 10 段指数函数来近似基线风险函数的 PH 模型,可以得到 HR 的稳健估计,偏差较小,均方误差(MSE)较小。当使用指数函数来近似复杂的基线风险函数时,观察到更大的偏差和 MSE。示例包括在内。基于这些发现,我们主张使用参数 PH 模型来分析区间删失数据。