Suppr超能文献

Effects of streptozotocin-induced diabetes on glucose transport in skeletal muscle.

作者信息

Barnard R J, Youngren J F, Kartel D S, Martin D A

机构信息

Department of Kinesiology, University of California, Los Angeles 90024-1568.

出版信息

Endocrinology. 1990 Apr;126(4):1921-6. doi: 10.1210/endo-126-4-1921.

Abstract

Female Sprague-Dawley rats were injected with streptozotocin (45 mg/kg) to induce mild diabetes (glucose, greater than 13 mM). Half of the animals received daily insulin injections to reduce hyperglycemia. After 10 weeks, sarcolemmal membranes were isolated from hindlimb muscles to study glucose transport, and the number of glucose transporters was assessed by cytochalasin-beta binding. Both glucose transport (19.2 +/- 1.6 vs. 31.93 +/- 3.29 pmol/mg protein.15 sec) and cytochalasin-beta binding (3.06 +/- 0.28 vs. 6.14 +/- 0.59 pmol/mg protein) were significantly (P less than 0.05) reduced in the diabetic untreated rats compared to control values. Daily insulin injections restored both (P less than 0.05) basal transport (33.22 +/- 3.62 pmol/mg protein.15 sec) and cytochalasin-beta binding (5.52 +/- 0.66 pmol/mg protein) to control levels. Maximum insulin stimulation (1 U/kg, iv) significantly increased (P less than 0.05) both glucose transport (30.18 +/- 3.76 vs. 96.48 +/- 4.21 pmol/mg protein.15 sec) and cytochalasin-beta binding (4.38 +/- 0.29 vs. 9.40 +/- 0.42 pmol/mg protein) in the untreated diabetic and control rats. However, the stimulation in the untreated diabetic rats only reached basal control levels, which was significantly (P less than 0.05) below the insulin-stimulated value for the controls. In the rats receiving daily insulin injections, maximum insulin stimulation increased (P less than 0.05) both glucose transport (58.67 +/- 15.24 pmol/mg protein.15 sec) and cytochalasin-beta binding (6.4 +/- 0.7 pmol/mg protein), but both transport and binding were significantly (P less than 0.05) below insulin-stimulated values for the control rats. These data show that insulin deficiency adversely affected the glucose transport system in skeletal muscle. Both basal and maximum insulin-stimulated transport and the number of transport molecules were reduced. Daily insulin treatment corrected some of the defects, but maximum insulin stimulation was still significantly below values for control animals.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验