Suppr超能文献

细菌遗传网络中的双稳响应:设计与动力学后果。

Bistable responses in bacterial genetic networks: designs and dynamical consequences.

机构信息

Department of Bioengineering, Rice University, Houston, TX 77005, USA.

出版信息

Math Biosci. 2011 May;231(1):76-89. doi: 10.1016/j.mbs.2011.03.004. Epub 2011 Mar 6.

Abstract

A key property of living cells is their ability to react to stimuli with specific biochemical responses. These responses can be understood through the dynamics of underlying biochemical and genetic networks. Evolutionary design principles have been well studied in networks that display graded responses, with a continuous relationship between input signal and system output. Alternatively, biochemical networks can exhibit bistable responses so that over a range of signals the network possesses two stable steady states. In this review, we discuss several conceptual examples illustrating network designs that can result in a bistable response of the biochemical network. Next, we examine manifestations of these designs in bacterial master-regulatory genetic circuits. In particular, we discuss mechanisms and dynamic consequences of bistability in three circuits: two-component systems, sigma-factor networks, and a multistep phosphorelay. Analyzing these examples allows us to expand our knowledge of evolutionary design principles networks with bistable responses.

摘要

活细胞的一个关键特性是它们能够对刺激做出特定的生化反应。这些反应可以通过潜在的生化和遗传网络的动态来理解。在显示渐变响应的网络中,输入信号和系统输出之间存在连续关系,进化设计原则已经得到了很好的研究。或者,生化网络可以表现出双稳态响应,使得在一系列信号下,网络具有两个稳定的稳态。在这篇综述中,我们讨论了几个概念性的例子,说明了可以导致生化网络产生双稳态响应的网络设计。接下来,我们研究了这些设计在细菌主调控遗传电路中的表现。特别是,我们讨论了三个电路中二稳态的机制和动态后果:双组分系统、σ因子网络和多步磷酸接力。分析这些例子使我们能够扩展我们对具有双稳态响应的进化设计原则网络的知识。

相似文献

1
Bistable responses in bacterial genetic networks: designs and dynamical consequences.
Math Biosci. 2011 May;231(1):76-89. doi: 10.1016/j.mbs.2011.03.004. Epub 2011 Mar 6.
3
Emergence of switch-like behavior in a large family of simple biochemical networks.
PLoS Comput Biol. 2011 May;7(5):e1002039. doi: 10.1371/journal.pcbi.1002039. Epub 2011 May 12.
4
Bistable Functions and Signaling Motifs in Systems Chemistry: Taking the Next Step Toward Synthetic Cells.
Acc Chem Res. 2025 Feb 4;58(3):428-439. doi: 10.1021/acs.accounts.4c00703. Epub 2025 Jan 22.
5
Rational design of complex phenotype via network models.
PLoS Comput Biol. 2021 Jul 29;17(7):e1009189. doi: 10.1371/journal.pcbi.1009189. eCollection 2021 Jul.
6
In Silico Evolution of Signaling Networks Using Rule-Based Models: Bistable Response Dynamics.
Methods Mol Biol. 2019;1945:315-339. doi: 10.1007/978-1-4939-9102-0_15.
7
Dynamics of Bacterial Gene Regulatory Networks.
Annu Rev Biophys. 2018 May 20;47:447-467. doi: 10.1146/annurev-biophys-070317-032947. Epub 2018 Mar 23.
9
Synthetic networks: oscillators and toggle switches for Escherichia coli.
Methods Mol Biol. 2012;813:287-300. doi: 10.1007/978-1-61779-412-4_17.
10
Deep Neural Networks for Predicting Single-Cell Responses and Probability Landscapes.
ACS Synth Biol. 2023 Aug 18;12(8):2367-2381. doi: 10.1021/acssynbio.3c00203. Epub 2023 Jul 19.

引用本文的文献

1
Phenotypic Plasticity and Cancer: A System Biology Perspective.
J Clin Med. 2024 Jul 23;13(15):4302. doi: 10.3390/jcm13154302.
2
Exploring the mono-/bistability range of positively autoregulated signaling systems in the presence of competing transcription factor binding sites.
PLoS Comput Biol. 2022 Nov 22;18(11):e1010738. doi: 10.1371/journal.pcbi.1010738. eCollection 2022 Nov.
3
Real-time detection of response regulator phosphorylation dynamics in live bacteria.
Proc Natl Acad Sci U S A. 2022 Aug 30;119(35):e2201204119. doi: 10.1073/pnas.2201204119. Epub 2022 Aug 22.
5
Tunable phenotypic variability through an autoregulatory alternative sigma factor circuit.
Mol Syst Biol. 2021 Jul;17(7):e9832. doi: 10.15252/msb.20209832.
7
Dynamic control in metabolic engineering: Theories, tools, and applications.
Metab Eng. 2021 Jan;63:126-140. doi: 10.1016/j.ymben.2020.08.015. Epub 2020 Sep 11.
8
Emergence of cooperative bistability and robustness of gene regulatory networks.
PLoS Comput Biol. 2020 Jun 29;16(6):e1007969. doi: 10.1371/journal.pcbi.1007969. eCollection 2020 Jun.
10
Overcoming the Cost of Positive Autoregulation by Accelerating the Response with a Coupled Negative Feedback.
Cell Rep. 2018 Sep 11;24(11):3061-3071.e6. doi: 10.1016/j.celrep.2018.08.023.

本文引用的文献

1
Phenotypic heterogeneity in mycobacterial stringent response.
BMC Syst Biol. 2011 Jan 27;5:18. doi: 10.1186/1752-0509-5-18.
2
Emerging properties of animal gene regulatory networks.
Nature. 2010 Dec 16;468(7326):911-20. doi: 10.1038/nature09645.
4
How mathematical modelling elucidates signalling in Bacillus subtilis.
Mol Microbiol. 2010 Sep;77(5):1083-95. doi: 10.1111/j.1365-2958.2010.07283.x.
5
The threshold level of the sensor histidine kinase KinA governs entry into sporulation in Bacillus subtilis.
J Bacteriol. 2010 Aug;192(15):3870-82. doi: 10.1128/JB.00466-10. Epub 2010 May 28.
6
Modeling reveals bistability and low-pass filtering in the network module determining blood stem cell fate.
PLoS Comput Biol. 2010 May 6;6(5):e1000771. doi: 10.1371/journal.pcbi.1000771.
7
Single-cell measurement of the levels and distributions of the phosphorelay components in a population of sporulating Bacillus subtilis cells.
Microbiology (Reading). 2010 Aug;156(Pt 8):2294-2304. doi: 10.1099/mic.0.038497-0. Epub 2010 Apr 22.
8
Broadly heterogeneous activation of the master regulator for sporulation in Bacillus subtilis.
Proc Natl Acad Sci U S A. 2010 May 4;107(18):8486-91. doi: 10.1073/pnas.1002499107. Epub 2010 Apr 19.
10
Adaptable functionality of transcriptional feedback in bacterial two-component systems.
PLoS Comput Biol. 2010 Feb 12;6(2):e1000676. doi: 10.1371/journal.pcbi.1000676.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验