Department of Biochemistry and Molecular Biology and Córdoba Maimónides Institute for Biomedical Research (IMIBIC), University of Córdoba, 14071 Córdoba, Spain.
J Biol Chem. 2011 Apr 29;286(17):15565-76. doi: 10.1074/jbc.M110.193102. Epub 2011 Mar 8.
Redoxins are involved in maintenance of thiol redox homeostasis, but their exact sites of action are only partly known. We have applied a combined redox proteomics and transcriptomics experimental strategy to discover specific functions of two interacting redoxins: dually localized glutaredoxin 2 (Grx2p) and mitochondrial peroxiredoxin 1 (Prx1p). We have identified 139 proteins showing differential postranslational thiol redox modifications when the cells do not express Grx2p, Prx1p, or both and have mapped the precise cysteines involved in each case. Some of these modifications constitute functional switches that affect metabolic and signaling pathways as the primary effect, leading to gene transcription remodeling as the secondary adaptive effect as demonstrated by a parallel high throughput gene expression analysis. The results suggest that in the absence of Grx2p, the metabolic flow toward nucleotide and aromatic amino acid biosynthesis is slowed down by redox modification of the key enzymes Rpe1p (D-ribulose-5-phosphate 3-epimerase), Tkl1p (transketolase) and Aro4p (3-deoxy-D-arabino-heptulosonate-7-phosphate synthase). The glycolytic mainstream is then diverted toward carbohydrate storage by induction of trehalose and glycogen biosynthesis genes. Porphyrin biosynthesis may also be compromised by inactivation of the redox-sensitive cytosolic enzymes Hem12p (uroporphyrinogen decarboxylase) and Sam1p (S-adenosyl methionine synthetase) and a battery of respiratory genes sensitive to low heme levels are induced. Genes of the Aft1p-dependent iron regulon were induced specifically in the absence of Prx1p despite optimal mitochondrial Fe-S biogenesis, suggesting dysfunction of the mitochondria to the cytosol signaling pathway. Strikingly, requirement of Grx2p for these events places dithiolic Grx2 in the framework of iron metabolism.
氧化还原酶参与维持硫醇氧化还原稳态,但它们的确切作用部位知之甚少。我们应用了一种组合的氧化还原蛋白质组学和转录组学实验策略,来发现两种相互作用的氧化还原酶:双重定位的谷氧还蛋白 2(Grx2p)和线粒体过氧化物酶 1(Prx1p)的特定功能。当细胞不表达 Grx2p、Prx1p 或两者都不表达时,我们已经鉴定出 139 种蛋白质显示出不同的翻译后硫醇氧化还原修饰,并且已经映射了每种情况下涉及的精确半胱氨酸。其中一些修饰构成了功能开关,作为主要影响,影响代谢和信号通路,导致基因转录重塑作为次要的适应效应,如平行的高通量基因表达分析所示。结果表明,在没有 Grx2p 的情况下,通过关键酶 Rpe1p(D-核酮糖-5-磷酸 3-差向异构酶)、Tkl1p(转酮醇酶)和 Aro4p(3-脱氧-D-阿拉伯庚糖-7-磷酸合酶)的氧化还原修饰,核苷酸和芳香族氨基酸生物合成的代谢流会减慢。然后,通过诱导海藻糖和糖原生物合成基因,糖酵解主流转向碳水化合物储存。卟啉生物合成也可能因氧化还原敏感的细胞质酶 Hem12p(尿卟啉原脱羧酶)和 Sam1p(S-腺苷甲硫氨酸合成酶)的失活以及一系列对低血红素水平敏感的呼吸基因的诱导而受到损害。尽管最佳的线粒体 Fe-S 生物发生,但在没有 Prx1p 的情况下,Aft1p 依赖性铁调节基因被特异性诱导,这表明线粒体到细胞质信号通路的功能障碍。引人注目的是,Grx2p 对这些事件的需求将二硫键 Grx2 置于铁代谢的框架内。