Kavli Nanoscience Institute, Mail Code 114-36, California Institute of Technology, Pasadena, California 91125, United States.
Nano Lett. 2011 Apr 13;11(4):1753-9. doi: 10.1021/nl2003158. Epub 2011 Mar 9.
Physisorption on solid surfaces is important in both fundamental studies and technology. Adsorbates can also be critical for the performance of miniature electromechanical resonators and sensors. Advances in resonant nanoelectromechanical systems (NEMS), particularly mass sensitivity attaining the single-molecule level, make it possible to probe surface physics in a new regime, where a small number of adatoms cause a detectable frequency shift in a high quality factor (Q) NEMS resonator, and adsorbate fluctuations result in resonance frequency noise. Here we report measurements and analysis of the kinetics and fluctuations of physisorbed xenon (Xe) atoms on a high-Q NEMS resonator vibrating at 190.5 MHz. The measured adsorption spectrum and frequency noise, combined with analytic modeling of surface diffusion and adsorption-desorption processes, suggest that diffusion dominates the observed excess noise. This study also reveals new power laws of frequency noise induced by diffusion, which could be important in other low-dimensional nanoscale systems.
固体表面的物理吸附在基础研究和技术中都很重要。吸附物对于微型机电谐振器和传感器的性能也很关键。谐振式纳机电系统(NEMS)的发展,特别是质量灵敏度达到单分子水平,使得人们有可能在新的环境中探测表面物理,在这种环境中,少量的吸附原子会导致高品质因数(Q)NEMS 谐振器的可检测频率偏移,而吸附物的波动会导致共振频率噪声。在这里,我们报告了对在 190.5 MHz 振动的高 Q NEMS 谐振器上物理吸附氙(Xe)原子的动力学和波动的测量和分析。测量的吸附光谱和频率噪声,结合对表面扩散和吸附-解吸过程的分析建模,表明扩散主导了观察到的过剩噪声。这项研究还揭示了由扩散引起的频率噪声的新幂律,这在其他低维纳米尺度系统中可能很重要。