Suppr超能文献

纳米机电系统中的表面吸附物波动和噪声。

Surface adsorbate fluctuations and noise in nanoelectromechanical systems.

机构信息

Kavli Nanoscience Institute, Mail Code 114-36, California Institute of Technology, Pasadena, California 91125, United States.

出版信息

Nano Lett. 2011 Apr 13;11(4):1753-9. doi: 10.1021/nl2003158. Epub 2011 Mar 9.

Abstract

Physisorption on solid surfaces is important in both fundamental studies and technology. Adsorbates can also be critical for the performance of miniature electromechanical resonators and sensors. Advances in resonant nanoelectromechanical systems (NEMS), particularly mass sensitivity attaining the single-molecule level, make it possible to probe surface physics in a new regime, where a small number of adatoms cause a detectable frequency shift in a high quality factor (Q) NEMS resonator, and adsorbate fluctuations result in resonance frequency noise. Here we report measurements and analysis of the kinetics and fluctuations of physisorbed xenon (Xe) atoms on a high-Q NEMS resonator vibrating at 190.5 MHz. The measured adsorption spectrum and frequency noise, combined with analytic modeling of surface diffusion and adsorption-desorption processes, suggest that diffusion dominates the observed excess noise. This study also reveals new power laws of frequency noise induced by diffusion, which could be important in other low-dimensional nanoscale systems.

摘要

固体表面的物理吸附在基础研究和技术中都很重要。吸附物对于微型机电谐振器和传感器的性能也很关键。谐振式纳机电系统(NEMS)的发展,特别是质量灵敏度达到单分子水平,使得人们有可能在新的环境中探测表面物理,在这种环境中,少量的吸附原子会导致高品质因数(Q)NEMS 谐振器的可检测频率偏移,而吸附物的波动会导致共振频率噪声。在这里,我们报告了对在 190.5 MHz 振动的高 Q NEMS 谐振器上物理吸附氙(Xe)原子的动力学和波动的测量和分析。测量的吸附光谱和频率噪声,结合对表面扩散和吸附-解吸过程的分析建模,表明扩散主导了观察到的过剩噪声。这项研究还揭示了由扩散引起的频率噪声的新幂律,这在其他低维纳米尺度系统中可能很重要。

相似文献

1
Surface adsorbate fluctuations and noise in nanoelectromechanical systems.
Nano Lett. 2011 Apr 13;11(4):1753-9. doi: 10.1021/nl2003158. Epub 2011 Mar 9.
2
Electromechanical resonator based on electrostatically actuated graphene-doped PVP nanofibers.
Nanotechnology. 2013 Apr 5;24(13):135201. doi: 10.1088/0957-4484/24/13/135201. Epub 2013 Mar 12.
3
In-plane nanoelectromechanical resonators based on silicon nanowire piezoresistive detection.
Nanotechnology. 2010 Apr 23;21(16):165504. doi: 10.1088/0957-4484/21/16/165504. Epub 2010 Mar 30.
4
Nanomechanical silicon resonators with intrinsic tunable gain and sub-nW power consumption.
ACS Nano. 2012 Jan 24;6(1):256-64. doi: 10.1021/nn203517w. Epub 2011 Dec 19.
5
Dissipation and fluctuations in nanoelectromechanical systems based on carbon nanotubes.
Nanotechnology. 2009 Mar 11;20(10):105202. doi: 10.1088/0957-4484/20/10/105202. Epub 2009 Feb 16.
6
Photothermal analysis of individual nanoparticulate samples using micromechanical resonators.
ACS Nano. 2013 Jul 23;7(7):6188-93. doi: 10.1021/nn402057f. Epub 2013 Jul 8.
7
Biosensing using nanoelectromechanical systems.
Methods Mol Biol. 2011;726:119-39. doi: 10.1007/978-1-61779-052-2_9.
8
Facile fabrication of single-crystal-diamond nanostructures with ultrahigh aspect ratio.
Adv Mater. 2013 Aug 7;25(29):3962-7. doi: 10.1002/adma.201301343. Epub 2013 Jun 25.
9
High frequency MoS2 nanomechanical resonators.
ACS Nano. 2013 Jul 23;7(7):6086-91. doi: 10.1021/nn4018872. Epub 2013 Jun 14.
10
Arrays of nanoelectromechanical biosensors functionalized by microcontact printing.
Nanotechnology. 2012 Dec 14;23(49):495501. doi: 10.1088/0957-4484/23/49/495501. Epub 2012 Nov 19.

引用本文的文献

1
Graphene nano-electromechanical mass sensor with high resolution at room temperature.
iScience. 2023 Jan 13;26(2):105958. doi: 10.1016/j.isci.2023.105958. eCollection 2023 Feb 17.
2
Nanomechanical Resonators: Toward Atomic Scale.
ACS Nano. 2022 Oct 25;16(10):15545-15585. doi: 10.1021/acsnano.2c01673. Epub 2022 Sep 2.
3
Electrical Low-Frequency 1/ Noise Due to Surface Diffusion of Scatterers on an Ultra-low-Noise Graphene Platform.
Nano Lett. 2021 Sep 22;21(18):7637-7643. doi: 10.1021/acs.nanolett.1c02325. Epub 2021 Sep 7.
4
Microcantilever: Dynamical Response for Mass Sensing and Fluid Characterization.
Sensors (Basel). 2020 Dec 27;21(1):115. doi: 10.3390/s21010115.
5
Mass Sensing for the Advanced Fabrication of Nanomechanical Resonators.
Nano Lett. 2019 Oct 9;19(10):6987-6992. doi: 10.1021/acs.nanolett.9b02351. Epub 2019 Sep 11.
6
Pillared graphene as an ultra-high sensitivity mass sensor.
Sci Rep. 2017 Oct 25;7(1):14012. doi: 10.1038/s41598-017-14182-6.
7
Frequency fluctuations in silicon nanoresonators.
Nat Nanotechnol. 2016 Jun;11(6):552-558. doi: 10.1038/nnano.2016.19. Epub 2016 Feb 29.
8
Resonating Behaviour of Nanomachined Holed Microcantilevers.
Sci Rep. 2015 Dec 8;5:17837. doi: 10.1038/srep17837.
9
Tunable micro- and nanomechanical resonators.
Sensors (Basel). 2015 Oct 16;15(10):26478-566. doi: 10.3390/s151026478.
10
Graphene-based nanoresonator with applications in optical transistor and mass sensing.
Sensors (Basel). 2014 Sep 9;14(9):16740-53. doi: 10.3390/s140916740.

本文引用的文献

1
Phase transitions of adsorbed atoms on the surface of a carbon nanotube.
Science. 2010 Jan 29;327(5965):552-5. doi: 10.1126/science.1182507.
2
Performance of monolayer graphene nanomechanical resonators with electrical readout.
Nat Nanotechnol. 2009 Dec;4(12):861-7. doi: 10.1038/nnano.2009.267. Epub 2009 Sep 20.
3
Local ordering and electronic signatures of submonolayer water on anatase TiO2(101).
Nat Mater. 2009 Jul;8(7):585-9. doi: 10.1038/nmat2466. Epub 2009 May 24.
4
Atomic-scale mass sensing using carbon nanotube resonators.
Nano Lett. 2008 Dec;8(12):4342-6. doi: 10.1021/nl802181c.
5
Ultrasensitive mass sensing with a nanotube electromechanical resonator.
Nano Lett. 2008 Nov;8(11):3735-8. doi: 10.1021/nl801982v. Epub 2008 Oct 22.
6
An atomic-resolution nanomechanical mass sensor.
Nat Nanotechnol. 2008 Sep;3(9):533-7. doi: 10.1038/nnano.2008.200. Epub 2008 Jul 20.
7
Self-transducing silicon nanowire electromechanical systems at room temperature.
Nano Lett. 2008 Jun;8(6):1756-61. doi: 10.1021/nl801071w. Epub 2008 May 16.
8
The force needed to move an atom on a surface.
Science. 2008 Feb 22;319(5866):1066-9. doi: 10.1126/science.1150288.
9
Time and frequency (time-domain) characterization, estimation, and prediction of precision clocks and oscillators.
IEEE Trans Ultrason Ferroelectr Freq Control. 1987;34(6):647-54. doi: 10.1109/t-uffc.1987.26997.
10
Modeling resonator frequency fluctuations induced by adsorbing and desorbing surface molecules.
IEEE Trans Ultrason Ferroelectr Freq Control. 1990;37(6):543-50. doi: 10.1109/58.63111.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验