LP2N Institut d'Optique, Université de Bordeaux, CNRS & IOGS-Bordeaux, Talence F-33405, France.
ACS Nano. 2011 Apr 26;5(4):2587-92. doi: 10.1021/nn1023285. Epub 2011 Mar 18.
Nanotechnology as well as advanced microscopy can play a fundamental role in understanding biological mechanisms. Here we present a study that combines a new type of nanomaterial with a new type of microscopy and highlights the potential for gathering novel information about cell membrane penetration and cytosol local viscosity. On the material side, we used gold nanoparticles that have an ordered stripe-like arrangement of domains. These "striped" nanoparticles are able to penetrate cell membranes directly without porating them. On the microscopy side, we used photothermal heterodyne imaging which allows detection of individual nanometer-sized gold particles in complex media. We showed that we can probe cytosolic presence as well as dynamics of these nanoparticles even at very low concentrations. We used the fluctuations of the photothermal signal from particles diffusing in the detection volume to estimate local cytosol viscosity which is about 20 times larger than that of water. This work opens new perspectives for mapping local diffusion properties of nano-objects inside living cells.
纳米技术和先进的显微镜技术在理解生物机制方面可以发挥重要作用。在这里,我们将介绍一项结合了新型纳米材料和新型显微镜技术的研究,该研究强调了获取关于细胞膜穿透和细胞质局部粘度的新信息的潜力。在材料方面,我们使用了具有有序条纹状畴排列的金纳米粒子。这些“条纹”纳米粒子能够直接穿透细胞膜而不会使其穿孔。在显微镜方面,我们使用了光热外差成像技术,该技术允许在复杂介质中检测单个纳米级金粒子。我们表明,即使在非常低的浓度下,我们也可以探测这些纳米粒子在细胞质中的存在和动力学。我们利用在检测体积中扩散的粒子的光热信号的涨落来估计局部细胞质粘度,其约为水的 20 倍。这项工作为在活细胞内绘制纳米物体的局部扩散特性开辟了新的视角。