Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
J Neurosci. 2011 Mar 9;31(10):3914-25. doi: 10.1523/JNEUROSCI.3631-10.2011.
Spinal muscular atrophy (SMA) results from reduced levels of the survival of motor neuron (SMN) protein, which has a well characterized function in spliceosomal small nuclear ribonucleoprotein assembly. Currently, it is not understood how deficiency of a housekeeping protein leads to the selective degeneration of spinal cord motor neurons. Numerous studies have shown that SMN is present in neuronal processes and has many interaction partners, including mRNA-binding proteins, suggesting a potential noncanonical role in axonal mRNA metabolism. In this study, we have established a novel technological approach using bimolecular fluorescence complementation (BiFC) and quantitative image analysis to characterize SMN-protein interactions in primary motor neurons. Consistent with biochemical studies on the SMN complex, BiFC analysis revealed that SMN dimerizes and interacts with Gemin2 in nuclear gems and axonal granules. In addition, using pull down assays, immunofluorescence, cell transfection, and BiFC, we characterized a novel interaction between SMN and the neuronal mRNA-binding protein HuD, which was dependent on the Tudor domain of SMN. A missense mutation in the SMN Tudor domain, which is known to cause SMA, impaired the interaction with HuD, but did not affect SMN axonal localization or self-association. Furthermore, time-lapse microscopy revealed SMN cotransport with HuD in live motor neurons. Importantly, SMN knockdown in primary motor neurons resulted in a specific reduction of both HuD protein and poly(A) mRNA levels in the axonal compartment. These findings reveal a noncanonical role for SMN whereby its interaction with mRNA-binding proteins may facilitate the localization of associated poly(A) mRNAs into axons.
脊髓性肌萎缩症(SMA)是由于运动神经元存活(SMN)蛋白水平降低引起的,SMN 蛋白在剪接体小核核糖核蛋白组装中具有明确的功能。目前,人们还不清楚如何缺乏一种管家蛋白会导致脊髓运动神经元的选择性退化。许多研究表明,SMN 存在于神经元过程中,并且有许多相互作用伙伴,包括 mRNA 结合蛋白,这表明它在轴突 mRNA 代谢中具有潜在的非典型作用。在这项研究中,我们建立了一种新的双分子荧光互补(BiFC)和定量图像分析技术方法,用于表征原代运动神经元中的 SMN 蛋白相互作用。与 SMN 复合物的生化研究一致,BiFC 分析表明 SMN 二聚体并与核宝石和轴突颗粒中的 Gemin2 相互作用。此外,通过下拉测定、免疫荧光、细胞转染和 BiFC,我们鉴定了 SMN 与神经元 mRNA 结合蛋白 HuD 之间的一种新相互作用,该相互作用依赖于 SMN 的 Tudor 结构域。SMN Tudor 结构域中的错义突变已知会导致 SMA,这种突变会损害与 HuD 的相互作用,但不会影响 SMN 的轴突定位或自身缔合。此外,延时显微镜显示 SMN 与 HuD 在活运动神经元中共转运。重要的是,原代运动神经元中的 SMN 敲低导致 HuD 蛋白和轴突隔室中 poly(A) mRNA 水平的特异性降低。这些发现揭示了 SMN 的一种非典型作用,其与 mRNA 结合蛋白的相互作用可能有助于将相关的 poly(A) mRNA 定位到轴突中。