Wullimann Mario F
Department of Biology II, Ludwig-Maximilians-University, Munich-Martinsried, Germany.
Integr Zool. 2009 Mar;4(1):123-133. doi: 10.1111/j.1749-4877.2008.00140.x.
Most zebrafish neurodevelopmental studies have focused on the embryo, which is characterized by primary neurogenesis of mostly transient neurons. Secondary neurogenesis becomes dominant in the hatching larva, when major brain parts are established and begin to differentiate. This developmental period allows for a comparative analysis of zebrafish brain organization with amniotes at equivalent stages of neurogenesis. Within a particular time window, the early forebrains of mice (Embyronic stage [E] 12.5/13.5 days [d]) and zebrafish (3 d) reveal highly comparable expression patterns of genes involved in neurogenesis, for example proneural and other transcription factors (Neurogenin1, NeuroD, Mash1/Zashla and Pax6). Further topological correspondences are seen in the expression of LIM and homeobox genes, such as Lhx6/7, Tbr2 and Dlx2a. When this analysis is extended to gamma-aminobutyric acid/glutamic acid decarboxylase (GABA/GAD) cell patterns during this critical time window, an astonishing degree of similarity between the two species is again seen, for example regarding the presence of GABA/GAD cells in the subpallium, with the pallium only starting to be invaded by such cells from the subpallium. Furthermore, the expression of proneural and other genes correlates with GABA cell patterns (e.g. Mash1/Zash1a gene expression in GABA-positive and Neurogenin1/NeuroD in GABA-negative telencephalic regions) in mice and zebrafish. Data from additional vertebrates, such as Xenopus, are also highly consistent with this analysis. Therefore, the vertebrate forebrain appears to undergo a phylotypic stage of secondary neurogenesis, characterized by regionally separated GABAergic (inhibitory) versus glutamatergic (excitatory) cell production sites, which are obscured later in development by tangential migration. This period is highly advantageous for molecular neuroanatomical cross-species comparisons.
大多数斑马鱼神经发育研究都集中在胚胎上,胚胎的特点是主要产生大多为短暂存在的神经元的初级神经发生。在孵化后的幼体中,次级神经发生占主导地位,此时主要脑区已形成并开始分化。这个发育阶段使得能够对斑马鱼的脑组织与处于神经发生等效阶段的羊膜动物进行比较分析。在特定的时间窗口内,小鼠(胚胎期[E]12.5/13.5天[d])和斑马鱼(3天)的早期前脑显示出参与神经发生的基因具有高度可比的表达模式,例如神经原性和其他转录因子(神经生成素1、神经D、Mash1/Zashla和Pax6)。在LIM和同源框基因(如Lhx6/7、Tbr2和Dlx2a)的表达中也观察到进一步的拓扑对应关系。当在这个关键时间窗口将这种分析扩展到γ-氨基丁酸/谷氨酸脱羧酶(GABA/GAD)细胞模式时,再次看到两个物种之间惊人的相似程度,例如关于GABA/GAD细胞在皮层下的存在情况,而皮层仅开始被来自皮层下的此类细胞侵入。此外,在小鼠和斑马鱼中,神经原性和其他基因的表达与GABA细胞模式相关(例如,GABA阳性端脑区域中Mash1/Zash1a基因的表达以及GABA阴性端脑区域中神经生成素1/神经D的表达)。来自其他脊椎动物(如非洲爪蟾)的数据也与这种分析高度一致。因此,脊椎动物的前脑似乎经历一个次级神经发生的系统发育阶段,其特征是区域分隔的GABA能(抑制性)与谷氨酸能(兴奋性)细胞产生部位,这些部位在发育后期因切向迁移而变得模糊。这个时期对于分子神经解剖学的跨物种比较非常有利。