Suppr超能文献

阿霉素的可生物降解星型 HPMA 聚合物偶联物用于被动肿瘤靶向。

Biodegradable star HPMA polymer conjugates of doxorubicin for passive tumor targeting.

机构信息

Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic.

出版信息

Eur J Pharm Sci. 2011 Apr 18;42(5):527-39. doi: 10.1016/j.ejps.2011.03.001. Epub 2011 Mar 8.

Abstract

New biodegradable star polymer-doxorubicin (Dox) conjugates designed for passive tumor targeting were investigated and the present study described their synthesis, physico-chemical characterization, drug release and biodegradation. In the conjugates the core formed by poly(amido amine) (PAMAM) dendrimers was grafted with semitelechelic N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers bearing doxorubicin attached by hydrazone bonds, which enabled intracellular pH-controlled drug release, or by a GFLG sequence, which was susceptible to enzymatic degradation. The controlled synthesis utilizing semitelechelic copolymer precursors facilitated preparation of biodegradable polymer conjugates in a broad range of molecular weights (110-295 kDa) while still maintaining low polydispersity (∼1.7). The polymer grafts were attached to the dendrimers either through stable amide bonds or enzymatically or reductively degradable spacers, which enabled intracellular degradation of the high molecular weight polymer carrier to products that were able to be excreted from the body by glomerular filtration. Biodegradability tests showed that the rate of degradation was much faster for reductively degradable conjugates (completed within 4 h) than the degradation of conjugates linked via an enzymatically degradable oligopeptide GFLG sequence (within 72 h). This finding was likely due to the difference in steric hindrance for the small molecule glutathione and the enzyme cathepsin B. As for drug release, the conjugates were fairly stable in buffer at pH 7.4 (model of blood stream) but released doxorubicin either under mild acidic conditions or in the presence of lysosomal enzyme cathepsin B, both of which modeled the tumor cell microenvironment.

摘要

设计用于被动肿瘤靶向的新型可生物降解星形聚合物-阿霉素(Dox)缀合物被研究,本研究描述了它们的合成、物理化学特性、药物释放和生物降解。在缀合物中,由聚(酰胺胺)(PAMAM)树枝状大分子形成的核被接枝有通过腙键连接的阿霉素的半双亲水性 N-(2-羟丙基)甲基丙烯酰胺(HPMA)共聚物,这使得能够进行细胞内 pH 控制的药物释放,或者通过 GFLG 序列,这易受酶降解的影响。利用半双亲水性共聚物前体的受控合成促进了可生物降解聚合物缀合物在广泛的分子量(110-295 kDa)范围内的制备,同时仍保持低的多分散性(约 1.7)。聚合物接枝通过稳定的酰胺键或酶或还原可降解间隔物连接到树枝状大分子上,这使得高分子量聚合物载体能够在细胞内降解为能够通过肾小球过滤从体内排出的产物。生物降解性测试表明,还原可降解缀合物(在 4 小时内完成)的降解速度比通过酶可降解寡肽 GFLG 序列连接的缀合物(在 72 小时内)快得多。这一发现可能是由于小分子谷胱甘肽和酶组织蛋白酶 B 的空间位阻不同所致。至于药物释放,缀合物在缓冲液中在 pH 7.4 下(模拟血流)相当稳定,但在轻度酸性条件下或在溶酶体酶组织蛋白酶 B 的存在下释放阿霉素,这两种条件均模拟了肿瘤细胞的微环境。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验