Suppr超能文献

通过径迹蚀刻纳米孔优化胶原蛋白运输

OPTIMIZING COLLAGEN TRANSPORT THROUGH TRACK-ETCHED NANOPORES.

作者信息

Bueno Ericka M, Ruberti Jeffrey W

机构信息

Department of Mechanical and Industrial Engineering, Northeastern University, 360 Huntington Avenue, 334 Snell Engineering, Boston, MA, 02115, Telephone: (617)373-7211, , E-mail:

出版信息

J Memb Sci. 2008 Aug 15;321(2):250-263. doi: 10.1016/j.memsci.2008.04.066.

Abstract

Polymer transport through nanopores is a potentially powerful tool for separation and organization of molecules in biotechnology applications. Our goal is to produce aligned collagen fibrils by mimicking cell-mediated collagen assembly: driving collagen monomers in solution through the aligned nanopores in track-etched membranes followed by fibrillogenesis at the pore exit. We examined type I atelo-collagen monomer transport in neutral, cold solution through polycarbonate track-etched membranes comprising 80-nm-diameter, 6-μm-long pores at 2% areal fraction. Source concentrations of 1.0, 2.8 and 7.0 mg/ml and pressure differentials of 0, 10 and 20 inH(2)O were used. Membrane surfaces were hydrophilized via covalent poly(ethylene-glycol) binding to limit solute-membrane interaction. Collagen transport through the nanopores was a non-intuitive process due to the complex behavior of this associating molecule in semi-dilute solution. Nonetheless, a modified open pore model provided reasonable predictions of transport parameters. Transport rates were concentration- and pressure-dependent, with diffusivities across the membrane in semi-dilute solution two-fold those in dilute solution, possibly via cooperative diffusion or polymer entrainment. The most significant enhancement of collagen transport was accomplished by membrane hydrophilization. The highest concentration transported (5.99±2.58 mg/ml) with the highest monomer flux (2.60±0.49 ×10(3) molecules s(-1) pore(-1)) was observed using 2.8 mg collagen/ml, 10 inH(2)O and hydrophilic membranes.

摘要

在生物技术应用中,聚合物通过纳米孔的传输是一种用于分子分离和组织的潜在强大工具。我们的目标是通过模拟细胞介导的胶原蛋白组装来制备排列整齐的胶原纤维:驱使溶液中的胶原蛋白单体通过径迹蚀刻膜中排列整齐的纳米孔,然后在孔出口处发生纤维形成。我们研究了I型脱辅基胶原蛋白单体在中性冷溶液中通过聚碳酸酯径迹蚀刻膜的传输情况,该膜具有直径80纳米、长度6微米的孔,面积分数为2%。使用了1.0、2.8和7.0毫克/毫升的源浓度以及0、10和20英寸水柱的压差。通过共价结合聚(乙二醇)使膜表面亲水,以限制溶质与膜的相互作用。由于这种缔合分子在半稀溶液中的复杂行为,胶原蛋白通过纳米孔的传输是一个非直观的过程。尽管如此,一个改进的开孔模型对传输参数提供了合理的预测。传输速率取决于浓度和压力,在半稀溶液中跨膜的扩散率是稀溶液中的两倍,可能是通过协同扩散或聚合物夹带实现的。胶原蛋白传输最显著的增强是通过膜的亲水化实现的。使用2.8毫克/毫升胶原蛋白、10英寸水柱和亲水膜时,观察到传输的最高浓度为(5.99±2.58毫克/毫升),单体通量最高为(2.60±0.49×10³个分子·秒⁻¹·孔⁻¹)。

相似文献

1
OPTIMIZING COLLAGEN TRANSPORT THROUGH TRACK-ETCHED NANOPORES.
J Memb Sci. 2008 Aug 15;321(2):250-263. doi: 10.1016/j.memsci.2008.04.066.
2
Transport properties of track-etched membranes having variable effective pore-lengths.
Nanotechnology. 2015 Dec 4;26(48):485502. doi: 10.1088/0957-4484/26/48/485502. Epub 2015 Nov 10.
3
An electrochemical study of microporous track-etched membrane permeability and the effect of surface protein layers.
Colloids Surf B Biointerfaces. 2017 Oct 1;158:84-92. doi: 10.1016/j.colsurfb.2017.06.032. Epub 2017 Jun 23.
4
Osmotic Pressure and Diffusion of Ions in Charged Nanopores.
Langmuir. 2021 Dec 7;37(48):14089-14095. doi: 10.1021/acs.langmuir.1c02267. Epub 2021 Nov 25.
6
Low-voltage electroosmotic pumps fabricated from track-etched polymer membranes.
Lab Chip. 2012 May 7;12(9):1710-6. doi: 10.1039/c2lc40059f. Epub 2012 Mar 22.
7
Nanopore detection of double stranded DNA using a track-etched polycarbonate membrane.
Talanta. 2015 Nov 1;144:268-74. doi: 10.1016/j.talanta.2015.06.005. Epub 2015 Jun 10.
8
Characterization of the surface charge property and porosity of track-etched polymer membranes.
Electrophoresis. 2022 Dec;43(23-24):2428-2435. doi: 10.1002/elps.202200198. Epub 2022 Oct 27.
9
Thermally controlled permeation of ionic molecules through synthetic nanopores functionalized with amine-terminated polymer brushes.
Nanotechnology. 2012 Jun 8;23(22):225502. doi: 10.1088/0957-4484/23/22/225502. Epub 2012 May 10.
10

引用本文的文献

1
Engineering Cell-ECM-Material Interactions for Musculoskeletal Regeneration.
Bioengineering (Basel). 2023 Apr 7;10(4):453. doi: 10.3390/bioengineering10040453.
2
Bioconjugation of COL1 protein on liquid-like solid surfaces to study tumor invasion dynamics.
Biointerphases. 2023 Mar 10;18(2):021001. doi: 10.1116/6.0002083.
3
Dynamic shear-influenced collagen self-assembly.
Biomaterials. 2009 Dec;30(34):6581-92. doi: 10.1016/j.biomaterials.2009.07.070. Epub 2009 Sep 17.

本文引用的文献

1
STATISTICAL EVALUATION OF SIEVE CONSTANTS IN ULTRAFILTRATION.
J Gen Physiol. 1936 Sep 20;20(1):95-104. doi: 10.1085/jgp.20.1.95.
2
VISCOSITY AND THE SHAPE OF PROTEIN MOLECULES.
Science. 1940 Aug 9;92(2380):132-3. doi: 10.1126/science.92.2380.132.
3
Nanobubbles in solid-state nanopores.
Phys Rev Lett. 2006 Aug 25;97(8):088101. doi: 10.1103/PhysRevLett.97.088101. Epub 2006 Aug 24.
4
Actin filaments are required for fibripositor-mediated collagen fibril alignment in tendon.
J Biol Chem. 2006 Dec 15;281(50):38592-8. doi: 10.1074/jbc.M607581200. Epub 2006 Oct 3.
5
Transport of alpha-helical peptides through alpha-hemolysin and aerolysin pores.
Biochemistry. 2006 Aug 1;45(30):9172-9. doi: 10.1021/bi0604835.
6
Microfibrillar structure of type I collagen in situ.
Proc Natl Acad Sci U S A. 2006 Jun 13;103(24):9001-5. doi: 10.1073/pnas.0502718103. Epub 2006 Jun 2.
7
Plasmid size up to 20 kbp does not limit effective in vivo lung gene transfer using compacted DNA nanoparticles.
Gene Ther. 2006 Jul;13(13):1048-51. doi: 10.1038/sj.gt.3302761. Epub 2006 Mar 9.
8
Peptide attachment to vapor deposited polymeric thin films.
Langmuir. 2004 May 25;20(11):4774-6. doi: 10.1021/la036102v.
9
Procollagen trafficking, processing and fibrillogenesis.
J Cell Sci. 2005 Apr 1;118(Pt 7):1341-53. doi: 10.1242/jcs.01731.
10
The nanopore connection to cell membrane unitary permeability.
Traffic. 2005 Mar;6(3):199-204. doi: 10.1111/j.1600-0854.2005.00269.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验