Suppr超能文献

k-t 稀疏组:一种加速动态 MRI 的方法。

k-t Group sparse: a method for accelerating dynamic MRI.

机构信息

King's College London, Division of Imaging Sciences and Biomedical Engineering, NIHR Biomedical Research Centre at Guy's and St Thomas' Foundation Trust, London, United Kingdom.

出版信息

Magn Reson Med. 2011 Oct;66(4):1163-76. doi: 10.1002/mrm.22883. Epub 2011 Mar 9.

Abstract

Compressed sensing (CS) is a data-reduction technique that has been applied to speed up the acquisition in MRI. However, the use of this technique in dynamic MR applications has been limited in terms of the maximum achievable reduction factor. In general, noise-like artefacts and bad temporal fidelity are visible in standard CS MRI reconstructions when high reduction factors are used. To increase the maximum achievable reduction factor, additional or prior information can be incorporated in the CS reconstruction. Here, a novel CS reconstruction method is proposed that exploits the structure within the sparse representation of a signal by enforcing the support components to be in the form of groups. These groups act like a constraint in the reconstruction. The information about the support region can be easily obtained from training data in dynamic MRI acquisitions. The proposed approach was tested in two-dimensional cardiac cine MRI with both downsampled and undersampled data. Results show that higher acceleration factors (up to 9-fold), with improved spatial and temporal quality, can be obtained with the proposed approach in comparison to the standard CS reconstructions.

摘要

压缩感知(CS)是一种数据缩减技术,已应用于加速 MRI 的采集。然而,在动态磁共振应用中,由于最大可实现的降质因子,该技术的应用受到限制。一般来说,在使用高降质因子时,标准 CS MRI 重建中会出现类似噪声的伪影和较差的时间保真度。为了增加最大可实现的降质因子,可以在 CS 重建中加入附加或先验信息。在这里,提出了一种新的 CS 重建方法,通过强制支撑分量的形式为组,利用信号稀疏表示中的结构。这些组在重建中充当约束。关于支撑区域的信息可以从动态 MRI 采集的训练数据中轻松获得。该方法在二维心脏电影 MRI 中进行了测试,包括下采样和欠采样数据。结果表明,与标准 CS 重建相比,该方法可以获得更高的加速因子(高达 9 倍),并提高空间和时间质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验