Tolouee Azar, Alirezaie Javad, Babyn Paul
Department of Electrical and Computer Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, M5B2K3, Canada.
Department of Medical Imaging, University of Saskatchewan and Saskatoon Health Region, Saskatoon, SK, Canada.
MAGMA. 2018 Feb;31(1):33-47. doi: 10.1007/s10334-017-0628-x. Epub 2017 May 31.
In dynamic cardiac magnetic resonance imaging (MRI), the spatiotemporal resolution is often limited by low imaging speed. Compressed sensing (CS) theory can be applied to improve imaging speed and spatiotemporal resolution. The combination of compressed sensing and low-rank matrix completion represents an attractive means to further increase imaging speed. By extending prior work, a Motion-Compensated Data Decomposition (MCDD) algorithm is proposed to improve the performance of CS for accelerated dynamic cardiac MRI.
The process of MCDD can be described as follows: first, we decompose the dynamic images into a low-rank (L) and a sparse component (S). The L component includes periodic motion in the background, since it is highly correlated among frames, and the S component corresponds to respiratory motion. A motion-estimation/motion-compensation (ME-MC) algorithm is then applied to the low-rank component to reconstruct a cardiac motion compensated dynamic cardiac MRI.
With validations on the numerical phantom and in vivo cardiac MRI data, we demonstrate the utility of the proposed scheme in significantly improving compressed sensing reconstructions by minimizing motion artifacts. The proposed method achieves higher PSNR and lower MSE and HFEN for medium to high acceleration factors.
The proposed method is observed to yield reconstructions with minimal spatiotemporal blurring and motion artifacts in comparison to the existing state-of-the-art methods.
在动态心脏磁共振成像(MRI)中,时空分辨率常常受到低成像速度的限制。压缩感知(CS)理论可用于提高成像速度和时空分辨率。压缩感知与低秩矩阵补全相结合是进一步提高成像速度的一种有吸引力的方法。通过扩展先前的工作,提出了一种运动补偿数据分解(MCDD)算法来提高CS在加速动态心脏MRI中的性能。
MCDD的过程可描述如下:首先,我们将动态图像分解为一个低秩(L)分量和一个稀疏分量(S)。L分量包括背景中的周期性运动,因为它在各帧之间高度相关,而S分量对应于呼吸运动。然后将运动估计/运动补偿(ME-MC)算法应用于低秩分量,以重建心脏运动补偿的动态心脏MRI。
通过对数字体模和体内心脏MRI数据的验证,我们证明了所提出方案在通过最小化运动伪影来显著改善压缩感知重建方面的效用。对于中等到高加速因子,所提出的方法实现了更高的峰值信噪比(PSNR)、更低的均方误差(MSE)和高频能量归一化(HFEN)。
与现有的最先进方法相比,观察到所提出的方法能够产生具有最小时空模糊和运动伪影的重建结果。