Suppr超能文献

低秩与联合稀疏信号的子空间感知恢复

Subspace aware recovery of low rank and jointly sparse signals.

作者信息

Biswas Sampurna, Dasgupta Soura, Mudumbai Raghuraman, Jacob Mathews

机构信息

Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA, USA.

出版信息

IEEE Trans Comput Imaging. 2017 Mar;3(1):22-35. doi: 10.1109/TCI.2016.2628352. Epub 2016 Nov 14.

Abstract

We consider the recovery of a matrix , which is simultaneously low rank and joint sparse, from few measurements of its columns using a two-step algorithm. Each column of is measured using a combination of two measurement matrices; one which is the same for every column, while the the second measurement matrix varies from column to column. The recovery proceeds by first estimating the row subspace vectors from the measurements corresponding to the common matrix. The estimated row subspace vectors are then used to recover from all the measurements using a convex program of joint sparsity minimization. Our main contribution is to provide sufficient conditions on the measurement matrices that guarantee the recovery of such a matrix using the above two-step algorithm. The results demonstrate quite significant savings in number of measurements when compared to the standard multiple measurement vector (MMV) scheme, which assumes same time invariant measurement pattern for all the time frames. We illustrate the impact of the sampling pattern on reconstruction quality using breath held cardiac cine MRI and cardiac perfusion MRI data, while the utility of the algorithm to accelerate the acquisition is demonstrated on MR parameter mapping.

摘要

我们考虑使用一种两步算法,从矩阵列的少量测量值中恢复一个同时具有低秩和联合稀疏性的矩阵。矩阵的每一列都使用两个测量矩阵的组合进行测量;其中一个测量矩阵对每一列都是相同的,而第二个测量矩阵则列与列不同。恢复过程首先从与公共矩阵对应的测量值中估计行子空间向量。然后,使用联合稀疏性最小化的凸规划,利用估计出的行子空间向量从所有测量值中恢复该矩阵。我们的主要贡献是为测量矩阵提供充分条件,以保证使用上述两步算法能够恢复这样的矩阵。结果表明,与标准的多测量向量(MMV)方案相比,测量次数有相当显著的减少,标准方案假设所有时间帧的测量模式是相同的且不随时间变化。我们使用屏气心脏电影磁共振成像和心脏灌注磁共振成像数据来说明采样模式对重建质量的影响,同时在磁共振参数映射上展示该算法加速采集的效用。

相似文献

1
Subspace aware recovery of low rank and jointly sparse signals.低秩与联合稀疏信号的子空间感知恢复
IEEE Trans Comput Imaging. 2017 Mar;3(1):22-35. doi: 10.1109/TCI.2016.2628352. Epub 2016 Nov 14.
8
Robust recovery of subspace structures by low-rank representation.基于低秩表示的子空间结构鲁棒恢复。
IEEE Trans Pattern Anal Mach Intell. 2013 Jan;35(1):171-84. doi: 10.1109/TPAMI.2012.88.
9
Incomplete-Data Oriented Multiview Dimension Reduction via Sparse Low-Rank Representation.基于稀疏低秩表示的面向不完整数据的多视图降维
IEEE Trans Neural Netw Learn Syst. 2018 Dec;29(12):6276-6291. doi: 10.1109/TNNLS.2018.2828699. Epub 2018 May 17.

本文引用的文献

8
k-t Group sparse: a method for accelerating dynamic MRI.k-t 稀疏组:一种加速动态 MRI 的方法。
Magn Reson Med. 2011 Oct;66(4):1163-76. doi: 10.1002/mrm.22883. Epub 2011 Mar 9.
9
Accelerated dynamic MRI exploiting sparsity and low-rank structure: k-t SLR.利用稀疏性和低秩结构的加速动态 MRI:k-t SLR。
IEEE Trans Med Imaging. 2011 May;30(5):1042-54. doi: 10.1109/TMI.2010.2100850. Epub 2011 Jan 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验