Division of Pharmacoepidemiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
Pharmacoepidemiol Drug Saf. 2011 Jun;20(6):551-9. doi: 10.1002/pds.2098. Epub 2011 Mar 10.
To examine the effect of variable selection strategies on the performance of propensity score (PS) methods in a study of statin initiation, mortality, and hip fracture assuming a true mortality reduction of < 15% and no effect on hip fracture.
We compared seniors initiating statins with seniors initiating glaucoma medications. Out of 202 covariates with a prevalence > 5%, PS variable selection strategies included none, a priori, factors predicting exposure, and factors predicting outcome. We estimated hazard ratios (HRs) for statin initiation on mortality and hip fracture from Cox models controlling for various PSs.
During 1 year follow-up, 2693 of 55,610 study subjects died and 496 suffered a hip fracture. The crude HR for statin initiators was 0.64 for mortality and 0.46 for hip fracture. Adjusting for the non-parsimonious PS yielded effect estimates of 0.83 (95%CI:0.75-0.93) and 0.72 (95%CI:0.56-0.93). Including in the PS only covariates associated with a greater than 20% increase or reduction in outcome rates yielded effect estimates of 0.84 (95%CI:0.75-0.94) and 0.76 (95%CI:0.61-0.95), which were closest to the effects predicted from randomized trials.
Due to the difficulty of pre-specifying all potential confounders of an exposure-outcome association, data-driven approaches to PS variable selection may be useful. Selecting covariates strongly associated with exposure but unrelated to outcome should be avoided, because this may increase bias. Selecting variables for PS based on their association with the outcome may help to reduce such bias.
研究他汀类药物起始、死亡率和髋部骨折的倾向评分(PS)方法的效果,假设真实死亡率降低<15%,对髋部骨折无影响。
我们比较了开始使用他汀类药物的老年人和开始使用青光眼药物的老年人。在 202 个具有> 5%患病率的协变量中,PS 变量选择策略包括不选择、先验选择、预测暴露的因素和预测结局的因素。我们从 Cox 模型中估计了 PS 不同情况下,他汀类药物起始对死亡率和髋部骨折的风险比(HRs)。
在 1 年的随访期间,55610 名研究对象中有 2693 人死亡,496 人发生髋部骨折。他汀类药物使用者的死亡率粗 HR 为 0.64,髋部骨折粗 HR 为 0.46。调整非简约 PS 后,效应估计值为 0.83(95%CI:0.75-0.93)和 0.72(95%CI:0.56-0.93)。仅将与结局发生率增加或减少> 20%相关的协变量纳入 PS 中,效应估计值为 0.84(95%CI:0.75-0.94)和 0.76(95%CI:0.61-0.95),这与随机试验预测的效果最接近。
由于难以预先指定暴露-结局关联的所有潜在混杂因素,基于数据驱动的 PS 变量选择方法可能是有用的。应避免选择与暴露强烈相关但与结局无关的协变量,因为这可能会增加偏差。根据与结局的相关性选择 PS 的变量可能有助于减少这种偏差。