Department of Physics, University of Crete, Heraklion, Crete, 71003, Greece.
J Phys Chem B. 2011 May 12;115(18):5634-47. doi: 10.1021/jp1118794. Epub 2011 Mar 11.
We discuss a many-body theory of the coherent ultrafast nonlinear optical response of systems with a strongly correlated electronic ground state that responds unadiabatically to photoexcitation. We introduce a truncation of quantum kinetic density matrix equations of motion that does not rely on an expansion in terms of the interactions and thus applies to strongly correlated systems. For this we expand in terms of the optical field, separate out contributions to the time-evolved many-body state due to correlated and uncorrelated multiple optical transitions, and use "Hubbard operator" density matrices to describe the exact dynamics of the individual contributions within a subspace of strongly coupled states, including "pure dephasing". Our purpose is to develop a quantum mechanical tool capable of exploring how, by coherently photoexciting selected modes, one can trigger nonlinear dynamics of strongly coupled degrees of freedom. Such dynamics could lead to photoinduced phase transitions. We apply our theory to the nonlinear response of a two-dimensional electron gas (2DEG) in a magnetic field. We coherently photoexcite the two lowest Landau level (LL) excitations using three time-delayed optical pulses. We identify some striking temporal and spectral features due to dynamical coupling of the two LLs facilitated by inter-Landau-level magnetoplasmon and magnetoroton excitations and compare to three-pulse four-wave-mixing (FWM) experiments. We show that these features depend sensitively on the dynamics of four-particle correlations between an electron-hole pair and a magnetoplasmon/magnetoroton, reminiscent of exciton-exciton correlations in undoped semiconductors. Our results shed light into unexplored coherent dynamics and relaxation of the quantum Hall system (QHS) and can provide new insight into non-equilibrium co-operative phenomena in strongly correlated systems.
我们讨论了一种多体理论,用于研究具有强关联电子基态的系统对光激发的非绝热超快非线性光学响应。我们引入了量子动力学密度矩阵运动方程的截断,该截断不依赖于相互作用的展开,因此适用于强关联系统。为此,我们以光场为变量展开,分离出由于相关和不相关的多个光跃迁而导致的时变多体态的贡献,并使用“哈伯德算子”密度矩阵来描述强耦合态子空间中各个贡献的精确动力学,包括“纯退相”。我们的目的是开发一种量子力学工具,用于探索如何通过相干地激发选定的模式来触发强耦合自由度的非线性动力学。这种动力学可能导致光致相变。我们将我们的理论应用于磁场中的二维电子气(2DEG)的非线性响应。我们使用三个时延时延的光脉冲相干地激发两个最低的朗道能级(LL)激发。我们确定了一些引人注目的时间和光谱特征,这些特征是由于LL 之间的动力学耦合引起的,这种耦合由带间磁等离子体激元和磁振子激发所促进,并与三脉冲四波混频(FWM)实验进行了比较。我们表明,这些特征对电子-空穴对与磁等离子体/磁振子之间的四粒子相关的动力学敏感,这与未掺杂半导体中的激子-激子相关相似。我们的结果揭示了量子霍尔系统(QHS)中未被探索的相干动力学和弛豫,并为强关联系统中的非平衡协同现象提供了新的见解。