Suppr超能文献

飞秒级磁开关通过强关联的自旋-电荷量子激发实现。

Femtosecond switching of magnetism via strongly correlated spin-charge quantum excitations.

机构信息

Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA.

出版信息

Nature. 2013 Apr 4;496(7443):69-73. doi: 10.1038/nature11934.

Abstract

The technological demand to push the gigahertz (10(9) hertz) switching speed limit of today's magnetic memory and logic devices into the terahertz (10(12) hertz) regime underlies the entire field of spin-electronics and integrated multi-functional devices. This challenge is met by all-optical magnetic switching based on coherent spin manipulation. By analogy to femtosecond chemistry and photosynthetic dynamics--in which photoproducts of chemical and biochemical reactions can be influenced by creating suitable superpositions of molecular states--femtosecond-laser-excited coherence between electronic states can switch magnetic order by 'suddenly' breaking the delicate balance between competing phases of correlated materials: for example, manganites exhibiting colossal magneto-resistance suitable for applications. Here we show femtosecond (10(-15) seconds) photo-induced switching from antiferromagnetic to ferromagnetic ordering in Pr0.7Ca0.3MnO3, by observing the establishment (within about 120 femtoseconds) of a huge temperature-dependent magnetization with photo-excitation threshold behaviour absent in the optical reflectivity. The development of ferromagnetic correlations during the femtosecond laser pulse reveals an initial quantum coherent regime of magnetism, distinguished from the picosecond (10(-12) seconds) lattice-heating regime characterized by phase separation without threshold behaviour. Our simulations reproduce the nonlinear femtosecond spin generation and underpin fast quantum spin-flip fluctuations correlated with coherent superpositions of electronic states to initiate local ferromagnetic correlations. These results merge two fields, femtosecond magnetism in metals and band insulators, and non-equilibrium phase transitions of strongly correlated electrons, in which local interactions exceeding the kinetic energy produce a complex balance of competing orders.

摘要

推动当今磁性记忆和逻辑器件的千兆赫兹(10(9) 赫兹)开关速度极限进入太赫兹(10(12) 赫兹)范围的技术需求是整个自旋电子学和集成多功能器件领域的基础。这种挑战是通过基于相干自旋操控的全光学磁开关来应对的。类似于飞秒化学和光合作用动力学——其中光化学反应和生物化学反应的光产物可以通过创建适当的分子态叠加来影响——电子态之间的飞秒激光激发相干性可以通过“突然”打破相关材料竞争相之间的微妙平衡来切换磁序:例如,适用于应用的巨磁电阻锰氧化物。在这里,我们通过观察在 Pr0.7Ca0.3MnO3 中从反铁磁有序到铁磁有序的超快(10(-15) 秒)光诱导转换,证明了超快(10(-15) 秒)光诱导转换,通过观察在光反射率中不存在的光激发阈值行为下建立的巨大温度依赖磁化。在飞秒激光脉冲期间铁磁相关性的发展揭示了磁的初始量子相干态,与没有阈值行为的特征是没有阈值行为的相分离的皮秒(10(-12) 秒)晶格加热态区分开来。我们的模拟再现了非线性飞秒自旋产生,并为与电子态相干叠加相关的快速量子自旋翻转波动提供了基础,以启动局部铁磁相关性。这些结果融合了两个领域,金属和带绝缘体中的飞秒磁学以及强关联电子的非平衡相变,其中局部相互作用超过动能会产生复杂的竞争顺序平衡。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验