Suppr超能文献

在大肠杆菌中,驱动因素使高浓度厌氧 1-丁醇的合成成为可能。

Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli.

机构信息

Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.

出版信息

Appl Environ Microbiol. 2011 May;77(9):2905-15. doi: 10.1128/AEM.03034-10. Epub 2011 Mar 11.

Abstract

1-Butanol, an important chemical feedstock and advanced biofuel, is produced by Clostridium species. Various efforts have been made to transfer the clostridial 1-butanol pathway into other microorganisms. However, in contrast to similar compounds, only limited titers of 1-butanol were attained. In this work, we constructed a modified clostridial 1-butanol pathway in Escherichia coli to provide an irreversible reaction catalyzed by trans-enoyl-coenzyme A (CoA) reductase (Ter) and created NADH and acetyl-CoA driving forces to direct the flux. We achieved high-titer (30 g/liter) and high-yield (70 to 88% of the theoretical) production of 1-butanol anaerobically, comparable to or exceeding the levels demonstrated by native producers. Without the NADH and acetyl-CoA driving forces, the Ter reaction alone only achieved about 1/10 the level of production. The engineered host platform also enables the selection of essential enzymes with better catalytic efficiency or expression by anaerobic growth rescue. These results demonstrate the importance of driving forces in the efficient production of nonnative products.

摘要

1-丁醇是一种重要的化学原料和先进的生物燃料,由梭菌属产生。人们已经做出了各种努力将梭菌的 1-丁醇途径转移到其他微生物中。然而,与类似的化合物相比,只能达到有限的 1-丁醇产量。在这项工作中,我们在大肠杆菌中构建了一个改良的梭菌 1-丁醇途径,提供了由反式烯酰辅酶 A(CoA)还原酶(Ter)催化的不可逆反应,并产生 NADH 和乙酰辅酶 A 驱动力来引导通量。我们实现了 1-丁醇的高产(30 克/升)和高收率(70%至 88%的理论值)的厌氧生产,与天然生产者的水平相当或超过。没有 NADH 和乙酰辅酶 A 驱动力,仅 Ter 反应的产量约为 1/10。工程化的宿主平台还可以通过厌氧生长拯救来选择具有更好催化效率或表达的必需酶。这些结果表明驱动力在非天然产物的高效生产中的重要性。

相似文献

3
Engineering a homobutanol fermentation pathway in Escherichia coli EG03.在大肠杆菌 EG03 中构建丁醇同型发酵途径。
J Ind Microbiol Biotechnol. 2012 Aug;39(8):1101-7. doi: 10.1007/s10295-012-1151-8. Epub 2012 Jul 10.
10
ATP drives direct photosynthetic production of 1-butanol in cyanobacteria.ATP 驱动蓝细菌中 1-丁醇的直接光合生产。
Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):6018-23. doi: 10.1073/pnas.1200074109. Epub 2012 Apr 2.

引用本文的文献

1
Programmable cell aggregation by a synthetic biosilicification approach.通过合成生物矿化方法实现可编程细胞聚集。
iScience. 2025 May 26;28(6):112519. doi: 10.1016/j.isci.2025.112519. eCollection 2025 Jun 20.
6
The potential of native and engineered Clostridia for biomass biorefining.天然及工程改造的梭菌在生物质生物精炼中的潜力。
Front Bioeng Biotechnol. 2024 Aug 16;12:1423935. doi: 10.3389/fbioe.2024.1423935. eCollection 2024.

本文引用的文献

5
Reconstructing the clostridial n-butanol metabolic pathway in Lactobacillus brevis.在短乳杆菌中重建梭菌丁酸代谢途径。
Appl Microbiol Biotechnol. 2010 Jun;87(2):635-46. doi: 10.1007/s00253-010-2480-z. Epub 2010 Mar 2.
6
Problems with the microbial production of butanol.丁醇微生物生产中的问题。
J Ind Microbiol Biotechnol. 2009 Sep;36(9):1127-38. doi: 10.1007/s10295-009-0609-9. Epub 2009 Jun 27.
7
Engineering alternative butanol production platforms in heterologous bacteria.在异源细菌中构建替代性丁醇生产平台。
Metab Eng. 2009 Jul-Sep;11(4-5):262-73. doi: 10.1016/j.ymben.2009.05.003. Epub 2009 May 21.
9
Re-engineering Escherichia coli for ethanol production.对大肠杆菌进行基因改造以用于乙醇生产。
Biotechnol Lett. 2008 Dec;30(12):2097-103. doi: 10.1007/s10529-008-9821-3. Epub 2008 Sep 5.
10
Fermentative butanol production by Clostridia.梭菌发酵生产丁醇
Biotechnol Bioeng. 2008 Oct 1;101(2):209-28. doi: 10.1002/bit.22003.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验