Suppr超能文献

3₁₀-螺旋构象有利于电压传感器 S4 片段向关闭状态转变。

3₁₀-helix conformation facilitates the transition of a voltage sensor S4 segment toward the down state.

机构信息

Theoretical and Computational Biophysics, Department of Theoretical Physics and Swedish e-Science Research Center, Royal Institute of Technology, Stockholm, Sweden.

出版信息

Biophys J. 2011 Mar 16;100(6):1446-54. doi: 10.1016/j.bpj.2011.02.003.

Abstract

The activation of voltage-gated ion channels is controlled by the S4 helix, with arginines every third residue. The x-ray structures are believed to reflect an open-inactivated state, and models propose combinations of translation, rotation, and tilt to reach the resting state. Recently, experiments and simulations have independently observed occurrence of 3(10)-helix in S4. This suggests S4 might make a transition from α- to 3(10)-helix in the gating process. Here, we show 3(10)-helix structure between Q1 and R3 in the S4 segment of a voltage sensor appears to facilitate the early stage of the motion toward a down state. We use multiple microsecond-steered molecular simulations to calculate the work required for translating S4 both as α-helix and transformed to 3(10)-helix. The barrier appears to be caused by salt-bridge reformation simultaneous to R4 passing the F233 hydrophobic lock, and it is almost a factor-two lower with 3(10)-helix. The latter facilitates translation because R2/R3 line up to face E183/E226, which reduces the requirement to rotate S4. This is also reflected in a lower root mean-square deviation distortion of the rest of the voltage sensor. This supports the 3(10) hypothesis, and could explain some of the differences between the open-inactivated- versus activated-states.

摘要

电压门控离子通道的激活受 S4 螺旋控制,每隔三个残基就有一个精氨酸。X 射线结构被认为反映了开放失活状态,而模型提出了翻译、旋转和倾斜的组合来达到静息状态。最近,实验和模拟独立观察到 S4 中 3(10)-螺旋的发生。这表明 S4 在门控过程中可能从 α-螺旋过渡到 3(10)-螺旋。在这里,我们展示了电压传感器 S4 段中 Q1 和 R3 之间的 3(10)-螺旋结构似乎促进了向向下状态运动的早期阶段。我们使用多个微秒引导的分子模拟来计算将 S4 从 α-螺旋转换为 3(10)-螺旋所需的功。该障碍似乎是由于盐桥重建与 R4 通过 F233 疏水性锁同时发生引起的,而 3(10)-螺旋的障碍低了几乎两倍。后者促进了翻译,因为 R2/R3 排列成面对 E183/E226,这减少了对 S4 旋转的要求。这也反映在电压传感器其余部分的均方根偏差扭曲较小。这支持了 3(10)假说,并可以解释开放失活状态与激活状态之间的一些差异。

相似文献

2
Molecular dynamics simulation of Kv channel voltage sensor helix in a lipid membrane with applied electric field.
Biophys J. 2008 Aug;95(4):1729-44. doi: 10.1529/biophysj.108.130658. Epub 2008 May 16.
3
The free energy barrier for arginine gating charge translation is altered by mutations in the voltage sensor domain.
PLoS One. 2012;7(10):e45880. doi: 10.1371/journal.pone.0045880. Epub 2012 Oct 19.
4
Metal Bridge in S4 Segment Supports Helix Transition in Shaker Channel.
Biophys J. 2020 Feb 25;118(4):922-933. doi: 10.1016/j.bpj.2019.08.035. Epub 2019 Sep 5.
5
Hydrophobic plug functions as a gate in voltage-gated proton channels.
Proc Natl Acad Sci U S A. 2014 Jan 14;111(2):E273-82. doi: 10.1073/pnas.1318018111. Epub 2013 Dec 30.
6
Conformational changes and slow dynamics through microsecond polarized atomistic molecular simulation of an integral Kv1.2 ion channel.
PLoS Comput Biol. 2009 Feb;5(2):e1000289. doi: 10.1371/journal.pcbi.1000289. Epub 2009 Feb 20.
7
Models of voltage-dependent conformational changes in NaChBac channels.
Biophys J. 2008 Oct;95(8):3663-76. doi: 10.1529/biophysj.108.135335. Epub 2008 Jul 18.
8
Interface connections of a transmembrane voltage sensor.
Proc Natl Acad Sci U S A. 2005 Oct 18;102(42):15059-64. doi: 10.1073/pnas.0507618102. Epub 2005 Oct 10.
9
Membrane insertion of a voltage sensor helix.
Biophys J. 2011 Jan 19;100(2):410-9. doi: 10.1016/j.bpj.2010.12.3682.

引用本文的文献

1
Dynamics of activation in the voltage-sensing domain of Ciona intestinalis phosphatase Ci-VSP.
Nat Commun. 2024 Feb 15;15(1):1408. doi: 10.1038/s41467-024-45514-6.
3
The 70-year search for the voltage-sensing mechanism of ion channels.
J Physiol. 2022 Jul;600(14):3227-3247. doi: 10.1113/JP282780. Epub 2022 Jul 6.
5
Lipid-Dependent Titration of Glutamic Acid at a Bilayer Membrane Interface.
ACS Omega. 2021 Mar 17;6(12):8488-8494. doi: 10.1021/acsomega.1c00276. eCollection 2021 Mar 30.
6
The Voltage-Dependent Deactivation of the KvAP Channel Involves the Breakage of Its S4 Helix.
Front Mol Biosci. 2020 Jul 29;7:162. doi: 10.3389/fmolb.2020.00162. eCollection 2020.
7
Roles for Countercharge in the Voltage Sensor Domain of Ion Channels.
Front Pharmacol. 2020 Feb 28;11:160. doi: 10.3389/fphar.2020.00160. eCollection 2020.
8
Aberrant Expression of a Non-muscle RBFOX2 Isoform Triggers Cardiac Conduction Defects in Myotonic Dystrophy.
Dev Cell. 2020 Mar 23;52(6):748-763.e6. doi: 10.1016/j.devcel.2020.01.037. Epub 2020 Feb 27.
9
Molecular Insights from Conformational Ensembles via Machine Learning.
Biophys J. 2020 Feb 4;118(3):765-780. doi: 10.1016/j.bpj.2019.12.016. Epub 2019 Dec 21.
10
Voltage-dependent gating in K channels: experimental results and quantitative models.
Pflugers Arch. 2020 Jan;472(1):27-47. doi: 10.1007/s00424-019-02336-6. Epub 2019 Dec 20.

本文引用的文献

1
GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.
J Chem Theory Comput. 2008 Mar;4(3):435-47. doi: 10.1021/ct700301q.
2
P-LINCS:  A Parallel Linear Constraint Solver for Molecular Simulation.
J Chem Theory Comput. 2008 Jan;4(1):116-22. doi: 10.1021/ct700200b.
3
Down-state model of the voltage-sensing domain of a potassium channel.
Biophys J. 2010 Jun 16;98(12):2857-66. doi: 10.1016/j.bpj.2010.03.031.
4
Calculation of the gating charge for the Kv1.2 voltage-activated potassium channel.
Biophys J. 2010 May 19;98(10):2189-98. doi: 10.1016/j.bpj.2010.02.056.
5
A gating charge transfer center in voltage sensors.
Science. 2010 Apr 2;328(5974):67-73. doi: 10.1126/science.1185954.
6
Conformational changes and slow dynamics through microsecond polarized atomistic molecular simulation of an integral Kv1.2 ion channel.
PLoS Comput Biol. 2009 Feb;5(2):e1000289. doi: 10.1371/journal.pcbi.1000289. Epub 2009 Feb 20.
7
Sensing voltage across lipid membranes.
Nature. 2008 Dec 18;456(7224):891-7. doi: 10.1038/nature07620.
8
S4-based voltage sensors have three major conformations.
Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17600-7. doi: 10.1073/pnas.0807387105. Epub 2008 Sep 25.
9
Models of voltage-dependent conformational changes in NaChBac channels.
Biophys J. 2008 Oct;95(8):3663-76. doi: 10.1529/biophysj.108.135335. Epub 2008 Jul 18.
10
Structure of the transmembrane regions of a bacterial cyclic nucleotide-regulated channel.
Proc Natl Acad Sci U S A. 2008 Feb 5;105(5):1511-5. doi: 10.1073/pnas.0711533105. Epub 2008 Jan 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验