Suppr超能文献

差异表达基因识别的排名分析。

Ranking analysis for identifying differentially expressed genes.

机构信息

School of Computer Science and Technology, Nanjing University of Science and Technology, Nanjing 210094, China.

出版信息

Genomics. 2011 May;97(5):326-9. doi: 10.1016/j.ygeno.2011.03.002. Epub 2011 Mar 22.

Abstract

Microarrays allow researchers to examine the expression of thousands of genes simultaneously. However, identification of genes differentially expressed in microarray experiments is challenging. With an optimal test statistic, we rank genes and estimate a threshold above which genes are considered to be differentially expressed genes (DE). This overcomes the embarrassing shortcoming of many statistical methods to determine the cut-off values in ranking analysis. Experiments demonstrate that our method is a good performance and avoids the problems with graphical examination and multiple hypotheses testing that affect alternative approaches. Comparing to those well known methods, our method is more sensitive to data sets with small differentially expressed values and not biased in favor of data sets based on certain distribution models.

摘要

微阵列允许研究人员同时检测数千个基因的表达。然而,在微阵列实验中识别差异表达的基因是具有挑战性的。通过最优的检验统计量,我们对基因进行排序,并估计一个阈值,超过该阈值的基因被认为是差异表达基因(DE)。这克服了许多统计方法在排序分析中确定截止值的尴尬缺点。实验表明,我们的方法性能良好,避免了图形检查和多重假设检验的问题,这些问题会影响替代方法。与那些著名的方法相比,我们的方法对差异表达值较小的数据集中更为敏感,并且不受基于特定分布模型的数据集的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验