Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France.
BMC Bioinformatics. 2014 Jan 15;15:14. doi: 10.1186/1471-2105-15-14.
BACKGROUND: Different methods have been proposed for analyzing differentially expressed (DE) genes in microarray data. Methods based on statistical tests that incorporate expression level variability are used more commonly than those based on fold change (FC). However, FC based results are more reproducible and biologically relevant. RESULTS: We propose a new method based on fold change rank ordering statistics (FCROS). We exploit the variation in calculated FC levels using combinatorial pairs of biological conditions in the datasets. A statistic is associated with the ranks of the FC values for each gene, and the resulting probability is used to identify the DE genes within an error level. The FCROS method is deterministic, requires a low computational runtime and also solves the problem of multiple tests which usually arises with microarray datasets. CONCLUSION: We compared the performance of FCROS with those of other methods using synthetic and real microarray datasets. We found that FCROS is well suited for DE gene identification from noisy datasets when compared with existing FC based methods.
背景:已经提出了多种方法来分析微阵列数据中的差异表达(DE)基因。与基于倍数变化(FC)的方法相比,更常使用基于统计检验的方法,这些方法可以整合表达水平的变异性。然而,基于 FC 的结果更具可重复性和生物学相关性。
结果:我们提出了一种基于倍数变化秩排序统计(FCROS)的新方法。我们利用数据集中生物条件的组合对计算出的 FC 水平的变化进行了利用。针对每个基因的 FC 值的秩,关联了一个统计量,并且所得到的概率用于在误差水平内识别 DE 基因。FCROS 方法是确定性的,需要低计算运行时间,并且还解决了通常在微阵列数据集中出现的多重检验问题。
结论:我们使用合成和真实的微阵列数据集比较了 FCROS 与其他方法的性能。与现有的基于 FC 的方法相比,我们发现 FCROS 非常适合从噪声数据集识别 DE 基因。
BMC Bioinformatics. 2014-1-15
BMC Bioinformatics. 2016-11-15
Medicina (Kaunas). 2019-6-11
BMC Bioinformatics. 2006-7-26
Bioinformatics. 2005-4-1
Genomics. 2011-3-22
J Bioinform Comput Biol. 2005-10
Dis Model Mech. 2022-12-1
Biomedicines. 2022-8-5
Microarrays (Basel). 2013-4-17
Bioinformatics. 2012-2-9
BMC Bioinformatics. 2011-6-6
Genomics. 2011-3-22
BMC Bioinformatics. 2010-5-27
Bioinformatics. 2009-3-15
Algorithms Mol Biol. 2008-6-26