文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

折叠变化等级排序统计:一种新的差异表达基因检测方法。

Fold change rank ordering statistics: a new method for detecting differentially expressed genes.

机构信息

Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France.

出版信息

BMC Bioinformatics. 2014 Jan 15;15:14. doi: 10.1186/1471-2105-15-14.


DOI:10.1186/1471-2105-15-14
PMID:24423217
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3899927/
Abstract

BACKGROUND: Different methods have been proposed for analyzing differentially expressed (DE) genes in microarray data. Methods based on statistical tests that incorporate expression level variability are used more commonly than those based on fold change (FC). However, FC based results are more reproducible and biologically relevant. RESULTS: We propose a new method based on fold change rank ordering statistics (FCROS). We exploit the variation in calculated FC levels using combinatorial pairs of biological conditions in the datasets. A statistic is associated with the ranks of the FC values for each gene, and the resulting probability is used to identify the DE genes within an error level. The FCROS method is deterministic, requires a low computational runtime and also solves the problem of multiple tests which usually arises with microarray datasets. CONCLUSION: We compared the performance of FCROS with those of other methods using synthetic and real microarray datasets. We found that FCROS is well suited for DE gene identification from noisy datasets when compared with existing FC based methods.

摘要

背景:已经提出了多种方法来分析微阵列数据中的差异表达(DE)基因。与基于倍数变化(FC)的方法相比,更常使用基于统计检验的方法,这些方法可以整合表达水平的变异性。然而,基于 FC 的结果更具可重复性和生物学相关性。

结果:我们提出了一种基于倍数变化秩排序统计(FCROS)的新方法。我们利用数据集中生物条件的组合对计算出的 FC 水平的变化进行了利用。针对每个基因的 FC 值的秩,关联了一个统计量,并且所得到的概率用于在误差水平内识别 DE 基因。FCROS 方法是确定性的,需要低计算运行时间,并且还解决了通常在微阵列数据集中出现的多重检验问题。

结论:我们使用合成和真实的微阵列数据集比较了 FCROS 与其他方法的性能。与现有的基于 FC 的方法相比,我们发现 FCROS 非常适合从噪声数据集识别 DE 基因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79ad/3899927/ecfca0d5cc48/1471-2105-15-14-7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79ad/3899927/0f4fc725f95e/1471-2105-15-14-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79ad/3899927/993503455445/1471-2105-15-14-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79ad/3899927/c6816b8ad6fd/1471-2105-15-14-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79ad/3899927/42886809875a/1471-2105-15-14-4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79ad/3899927/4419d0a56b44/1471-2105-15-14-5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79ad/3899927/d12b5ab0d6bc/1471-2105-15-14-6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79ad/3899927/ecfca0d5cc48/1471-2105-15-14-7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79ad/3899927/0f4fc725f95e/1471-2105-15-14-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79ad/3899927/993503455445/1471-2105-15-14-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79ad/3899927/c6816b8ad6fd/1471-2105-15-14-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79ad/3899927/42886809875a/1471-2105-15-14-4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79ad/3899927/4419d0a56b44/1471-2105-15-14-5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79ad/3899927/d12b5ab0d6bc/1471-2105-15-14-6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79ad/3899927/ecfca0d5cc48/1471-2105-15-14-7.jpg

相似文献

[1]
Fold change rank ordering statistics: a new method for detecting differentially expressed genes.

BMC Bioinformatics. 2014-1-15

[2]
Comments on: fold change rank ordering statistics: a new method for detecting differentially expressed genes.

BMC Bioinformatics. 2016-11-15

[3]
A Robust Approach for Identification of Cancer Biomarkers and Candidate Drugs.

Medicina (Kaunas). 2019-6-11

[4]
Comparison of seven methods for producing Affymetrix expression scores based on False Discovery Rates in disease profiling data.

BMC Bioinformatics. 2005-2-10

[5]
Comparison and evaluation of methods for generating differentially expressed gene lists from microarray data.

BMC Bioinformatics. 2006-7-26

[6]
The balance of reproducibility, sensitivity, and specificity of lists of differentially expressed genes in microarray studies.

BMC Bioinformatics. 2008-8-12

[7]
Identifying differentially expressed genes from microarray experiments via statistic synthesis.

Bioinformatics. 2005-4-1

[8]
Quadratic regression analysis for gene discovery and pattern recognition for non-cyclic short time-course microarray experiments.

BMC Bioinformatics. 2005-4-25

[9]
Ranking analysis for identifying differentially expressed genes.

Genomics. 2011-3-22

[10]
Rank-based methods as a non-parametric alternative of the T-statistic for the analysis of biological microarray data.

J Bioinform Comput Biol. 2005-10

引用本文的文献

[1]
Analyzing the Molecular Signature Genes and Pathways of Dengue Fever, Dengue Hemorrhagic Fever and Dengue Shock Syndrome Caused by Dengue Virus in India.

Mol Biotechnol. 2025-2-22

[2]
Identification of key regulators in pancreatic ductal adenocarcinoma using network theoretical approach.

PLoS One. 2025-1-27

[3]
Virulence factor discovery identifies associations between the Fic gene family and Fap2 fusobacteria in colorectal cancer microbiomes.

mBio. 2025-2-5

[4]
Revisiting Fold-Change Calculation: Preference for Median or Geometric Mean over Arithmetic Mean-Based Methods.

Biomedicines. 2024-7-23

[5]
Investigating the Expression Levels of Bax and Bcl-2 Genes in Peripheral Blood Lymphocytes of Industrial Radiation Workers in the Asaluyeh Region.

J Biomed Phys Eng. 2024-6-1

[6]
A glimpse into the fungal metabolomic abyss: Novel network analysis reveals relationships between exogenous compounds and their outputs.

PNAS Nexus. 2023-9-29

[7]
Chemical-induced phase transition and global conformational reorganization of chromatin.

Nat Commun. 2023-9-9

[8]
Changes in social behavior with MAPK2 and KCTD13/CUL3 pathways alterations in two new outbred rat models for the 16p11.2 syndromes with autism spectrum disorders.

Front Neurosci. 2023-7-3

[9]
Ts66Yah, a mouse model of Down syndrome with improved construct and face validity.

Dis Model Mech. 2022-12-1

[10]
In Vitro Molecular Study of Titanium-Niobium Alloy Biocompatibility.

Biomedicines. 2022-8-5

本文引用的文献

[1]
A Flexible Microarray Data Simulation Model.

Microarrays (Basel). 2013-4-17

[2]
The exact probability distribution of the rank product statistics for replicated experiments.

FEBS Lett. 2013-2-8

[3]
Distributional fold change test - a statistical approach for detecting differential expression in microarray experiments.

Algorithms Mol Biol. 2012-11-2

[4]
A novel significance score for gene selection and ranking.

Bioinformatics. 2012-2-9

[5]
Evaluating methods for ranking differentially expressed genes applied to microArray quality control data.

BMC Bioinformatics. 2011-6-6

[6]
Ranking analysis for identifying differentially expressed genes.

Genomics. 2011-3-22

[7]
Preferred analysis methods for Affymetrix GeneChips. II. An expanded, balanced, wholly-defined spike-in dataset.

BMC Bioinformatics. 2010-5-27

[8]
Validation of differential gene expression algorithms: application comparing fold-change estimation to hypothesis testing.

BMC Bioinformatics. 2010-1-28

[9]
Testing significance relative to a fold-change threshold is a TREAT.

Bioinformatics. 2009-3-15

[10]
A weighted average difference method for detecting differentially expressed genes from microarray data.

Algorithms Mol Biol. 2008-6-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索