Suppr超能文献

使用 SGRQ 预测 EQ-5D 值。

Predicting EQ-5D values using the SGRQ.

机构信息

National Institute for Health and Clinical Excellence, London, UK.

出版信息

Value Health. 2011 Mar-Apr;14(2):354-60. doi: 10.1016/j.jval.2010.09.011.

Abstract

OBJECTIVES

The purpose of this study was to develop and validate an algorithm that predicts EQ-5D utility from the St. George's Respiratory Questionnaire (SGRQ) in subjects with chronic obstructive pulmonary disease and to examine the effect of using this algorithm in predicting quality-adjusted life-years (QALYs).

METHODS

In the TORCH (Towards a Revolution in COPD Health) trial, the SGRQ and EQ-5D were administered at baseline and every 24 weeks for 3 years. To map EQ-5D utility from the SGRQ, ordinary least squares (OLS), generalized linear models (GLMs) and two-part models were used. Algorithms were developed in a fitting sample and used to predict utility scores in a validation sample and selected based on root-mean-square error (RMSE). QALYs were estimated from the algorithm and compared to QALYs derived from EQ-5D utility scores collected in the trial.

RESULTS

A simple OLS algorithm was found to perform as well as algorithms developed using more complex modeling structures. The resulting model was (RMSE 0.1723): EQ-5D = 0.9617 - 0.0013 × SGRQ total - 0.0001 × SGRQ total(2) + 0.0231 × male. Ordering of treatments by QALY gain was dependent on the method of utility estimation.

CONCLUSION

A mapping algorithm can be used to predict EQ-5D utility scores from the SGRQ and may be useful in some situations; however, for use in a health technology assessment (HTA) submission in which precision of estimation is important, it is in the interests of both the manufacturer and the HTA body that utility scores be directly derived from the clinical trial population.

摘要

目的

本研究旨在开发和验证一种能够从慢性阻塞性肺疾病患者的圣乔治呼吸问卷(SGRQ)中预测 EQ-5D 效用的算法,并探讨在预测质量调整生命年(QALYs)中使用该算法的效果。

方法

在 TORCH(改善 COPD 健康的新方法)试验中,在基线和 3 年内每 24 周测量一次 SGRQ 和 EQ-5D。为了从 SGRQ 中映射 EQ-5D 效用,使用了普通最小二乘法(OLS)、广义线性模型(GLM)和两部分模型。在拟合样本中开发了算法,并在验证样本中用于预测效用评分,并根据均方根误差(RMSE)进行选择。从算法中估计了 QALYs,并与从试验中收集的 EQ-5D 效用得分中得出的 QALYs 进行了比较。

结果

发现简单的 OLS 算法与使用更复杂建模结构开发的算法表现一样好。得到的模型为(RMSE 0.1723):EQ-5D = 0.9617 - 0.0013 × SGRQ 总得分 - 0.0001 × SGRQ 总得分² + 0.0231 × 男性。根据 QALY 增益对治疗进行排序取决于效用估计方法。

结论

可以使用映射算法从 SGRQ 中预测 EQ-5D 效用评分,在某些情况下可能有用;但是,对于在需要精确估计的卫生技术评估(HTA)提交中使用,为了制造商和 HTA 机构的利益,最好从临床试验人群中直接得出效用评分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验