Suppr超能文献

使用数字微镜器件进行图案化光刺激以研究跨分支点的树突整合。

Patterned photostimulation with digital micromirror devices to investigate dendritic integration across branch points.

作者信息

Liang Conrad W, Mohammadi Michael, Santos M Daniel, Tang Cha-Min

机构信息

Department of Neurology, Baltimore VA Medical Center, University of Maryland School of Medicine, USA.

出版信息

J Vis Exp. 2011 Mar 2(49):2003. doi: 10.3791/2003.

Abstract

Light is a versatile and precise means to control neuronal excitability. The recent introduction of light sensitive effectors such as channel-rhodopsin and caged neurotransmitters have led to interests in developing better means to control patterns of light in space and time that are useful for experimental neuroscience. One conventional strategy, employed in confocal and 2-photon microscopy, is to focus light to a diffraction limited spot and then scan that single spot sequentially over the region of interest. This approach becomes problematic if large areas have to be stimulated within a brief time window, a problem more applicable to photostimulation than for imaging. An alternate strategy is to project the complete spatial pattern on the target with the aid of a digital micromirror device (DMD). The DMD approach is appealing because the hardware components are relatively inexpensive and is supported by commercial interests. Because such a system is not available for upright microscopes, we will discuss the critical issues in the construction and operations of such a DMD system. Even though we will be primarily describing the construction of the system for UV photolysis, the modifications for building the much simpler visible light system for optogenetic experiments will also be provided. The UV photolysis system was used to carryout experiments to study a fundamental question in neuroscience, how are spatially distributed inputs integrated across distal dendritic branch points. The results suggest that integration can be non-linear across branch points and the supralinearity is largely mediated by NMDA receptors.

摘要

光作为一种控制神经元兴奋性的手段,具有通用性和精确性。最近引入的诸如通道视紫红质和笼锁神经递质等光敏感效应器,引发了人们对开发更好的方法来控制光在空间和时间上的模式的兴趣,这对于实验神经科学很有用。共聚焦显微镜和双光子显微镜中采用的一种传统策略是将光聚焦到一个受衍射限制的点上,然后在感兴趣的区域上依次扫描该单个点。如果必须在短时间窗口内刺激大面积区域,这种方法就会出现问题,这个问题在光刺激中比在成像中更适用。另一种策略是借助数字微镜器件(DMD)将完整的空间模式投射到目标上。DMD方法很有吸引力,因为硬件组件相对便宜,并且有商业利益的支持。由于这种系统不适用于直立显微镜,我们将讨论这种DMD系统构建和操作中的关键问题。尽管我们将主要描述用于紫外光解的系统的构建,但也将提供构建用于光遗传学实验的更简单的可见光系统的修改方法。紫外光解系统用于进行实验,以研究神经科学中的一个基本问题,即空间分布的输入如何在远端树突分支点上进行整合。结果表明,跨分支点的整合可能是非线性的,并且超线性主要由NMDA受体介导。

相似文献

2
Three-dimensional holographic photostimulation of the dendritic arbor.
J Neural Eng. 2011 Aug;8(4):046002. doi: 10.1088/1741-2560/8/4/046002. Epub 2011 May 27.
3
Economic and simple system to combine single-spot photolysis and whole-field fluorescence imaging.
J Biomed Opt. 2013 Jun;18(6):60505. doi: 10.1117/1.JBO.18.6.060505.
4
Advanced technique of infrared LED imaging of unstained cells and intracellular structures in isolated spinal cord, brainstem, ganglia and cerebellum.
J Neurosci Methods. 2009 Mar 15;177(2):369-80. doi: 10.1016/j.jneumeth.2008.10.024. Epub 2008 Oct 30.
6
A novel control software that improves the experimental workflow of scanning photostimulation experiments.
J Neurosci Methods. 2008 Oct 30;175(1):44-57. doi: 10.1016/j.jneumeth.2008.08.010. Epub 2008 Aug 15.
7
Using affordable LED arrays for photo-stimulation of neurons.
J Vis Exp. 2011 Nov 15(57):3379. doi: 10.3791/3379.
8
Mapping inhibitory neuronal circuits by laser scanning photostimulation.
J Vis Exp. 2011 Oct 6(56):3109. doi: 10.3791/3109.
9
Fast optical sectioning obtained by structured illumination microscopy using a digital mirror device.
J Biomed Opt. 2013 Jun;18(6):060503. doi: 10.1117/1.JBO.18.6.060503.
10
Four-dimensional multi-site photolysis of caged neurotransmitters.
Front Cell Neurosci. 2013 Dec 2;7:231. doi: 10.3389/fncel.2013.00231. eCollection 2013.

引用本文的文献

1
Modern Microscopic Approaches to Astrocytes.
Int J Mol Sci. 2023 Mar 20;24(6):5883. doi: 10.3390/ijms24065883.
3
Spatio-Temporal Characteristics of Inhibition Mapped by Optical Stimulation in Mouse Olfactory Bulb.
Front Neural Circuits. 2016 Mar 22;10:15. doi: 10.3389/fncir.2016.00015. eCollection 2016.
4
Computer-generated holography enhances voltage dye fluorescence discrimination in adjacent neuronal structures.
Neurophotonics. 2015 Apr;2(2):021007. doi: 10.1117/1.NPh.2.2.021007. Epub 2015 Jan 7.
5
A computer-assisted multi-electrode patch-clamp system.
J Vis Exp. 2013 Oct 18(80):e50630. doi: 10.3791/50630.
6
Dendritic hold and read: a gated mechanism for short term information storage and retrieval.
PLoS One. 2012;7(5):e37542. doi: 10.1371/journal.pone.0037542. Epub 2012 May 22.
7
The age of enlightenment: evolving opportunities in brain research through optical manipulation of neuronal activity.
Front Syst Neurosci. 2011 Dec 7;5:95. doi: 10.3389/fnsys.2011.00095. eCollection 2011.
8
Parallel optical control of spatiotemporal neuronal spike activity using high-speed digital light processing.
Front Syst Neurosci. 2011 Aug 25;5:70. doi: 10.3389/fnsys.2011.00070. eCollection 2011.

本文引用的文献

1
Electrophysiology in the age of light.
Nature. 2009 Oct 15;461(7266):930-9. doi: 10.1038/nature08540.
2
Holographic photolysis of caged neurotransmitters.
Nat Methods. 2008 Sep;5(9):821-7. doi: 10.1038/nmeth.1241.
3
Cell imaging: Light activated.
Nature. 2008 Dec 11;456(7223):826-7. doi: 10.1038/456826a.
4
Photolysis of caged neurotransmitters: theory and procedures for light delivery.
Curr Protoc Neurosci. 2006 Nov;Chapter 6:Unit 6.21. doi: 10.1002/0471142301.ns0621s37.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验