文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

具有无标度特性的行为动力学与具有无标度特性的皮质动力学直接相关联。

Scale-free behavioral dynamics directly linked with scale-free cortical dynamics.

机构信息

Department of Physics, University of Arkansas at Fayetteville, Fayetteville, United States.

出版信息

Elife. 2023 Jan 27;12:e79950. doi: 10.7554/eLife.79950.


DOI:10.7554/eLife.79950
PMID:36705565
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9931391/
Abstract

Naturally occurring body movements and collective neural activity both exhibit complex dynamics, often with scale-free, fractal spatiotemporal structure. Scale-free dynamics of both brain and behavior are important because each is associated with functional benefits to the organism. Despite their similarities, scale-free brain activity and scale-free behavior have been studied separately, without a unified explanation. Here, we show that scale-free dynamics of mouse behavior and neurons in the visual cortex are strongly related. Surprisingly, the scale-free neural activity is limited to specific subsets of neurons, and these scale-free subsets exhibit stochastic winner-take-all competition with other neural subsets. This observation is inconsistent with prevailing theories of scale-free dynamics in neural systems, which stem from the criticality hypothesis. We develop a computational model which incorporates known cell-type-specific circuit structure, explaining our findings with a new type of critical dynamics. Our results establish neural underpinnings of scale-free behavior and clear behavioral relevance of scale-free neural activity.

摘要

自然发生的身体运动和集体神经活动都表现出复杂的动力学特性,通常具有无标度、分形的时空结构。大脑和行为的无标度动力学都很重要,因为它们都与生物体的功能益处有关。尽管它们有相似之处,但无标度脑活动和无标度行为是分开研究的,没有一个统一的解释。在这里,我们表明,老鼠行为和视觉皮层神经元的无标度动力学密切相关。令人惊讶的是,无标度神经活动仅限于特定的神经元子集,而这些无标度子集与其他神经子集表现出随机的胜者通吃竞争。这一观察结果与源自临界假设的神经系统无标度动力学的流行理论不一致。我们开发了一个计算模型,该模型包含了已知的细胞类型特异性电路结构,用一种新的临界动力学来解释我们的发现。我们的研究结果为无标度行为提供了神经基础,并明确了无标度神经活动的行为相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9931391/1eb18a172c15/elife-79950-fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9931391/960a3f01c0a0/elife-79950-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9931391/95b2147e3254/elife-79950-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9931391/01a1cf4c9819/elife-79950-fig2-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9931391/465fda9c9f82/elife-79950-fig2-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9931391/8a5e56802c57/elife-79950-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9931391/7b8082dc9401/elife-79950-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9931391/b2a3a6109019/elife-79950-fig3-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9931391/8585692127cc/elife-79950-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9931391/0bd144a00db7/elife-79950-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9931391/15668be7e1c4/elife-79950-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9931391/c4bb9643915d/elife-79950-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9931391/d55f6e0cb244/elife-79950-fig6-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9931391/a02575cb8329/elife-79950-fig6-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9931391/a22e829189bd/elife-79950-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9931391/b8a623f9b1fd/elife-79950-fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9931391/cad94318969a/elife-79950-fig8-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9931391/67c52d9f02b6/elife-79950-fig8-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9931391/d738de255700/elife-79950-fig8-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9931391/1eb18a172c15/elife-79950-fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9931391/960a3f01c0a0/elife-79950-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9931391/95b2147e3254/elife-79950-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9931391/01a1cf4c9819/elife-79950-fig2-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9931391/465fda9c9f82/elife-79950-fig2-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9931391/8a5e56802c57/elife-79950-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9931391/7b8082dc9401/elife-79950-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9931391/b2a3a6109019/elife-79950-fig3-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9931391/8585692127cc/elife-79950-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9931391/0bd144a00db7/elife-79950-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9931391/15668be7e1c4/elife-79950-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9931391/c4bb9643915d/elife-79950-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9931391/d55f6e0cb244/elife-79950-fig6-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9931391/a02575cb8329/elife-79950-fig6-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9931391/a22e829189bd/elife-79950-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9931391/b8a623f9b1fd/elife-79950-fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9931391/cad94318969a/elife-79950-fig8-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9931391/67c52d9f02b6/elife-79950-fig8-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9931391/d738de255700/elife-79950-fig8-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9931391/1eb18a172c15/elife-79950-fig9.jpg

相似文献

[1]
Scale-free behavioral dynamics directly linked with scale-free cortical dynamics.

Elife. 2023-1-27

[2]
Short-Term Memory Impairment

2025-1

[3]
Sexual Harassment and Prevention Training

2025-1

[4]
Stigma Management Strategies of Autistic Social Media Users.

Autism Adulthood. 2025-5-28

[5]
"In a State of Flow": A Qualitative Examination of Autistic Adults' Phenomenological Experiences of Task Immersion.

Autism Adulthood. 2024-9-16

[6]
Neuro-evolutionary evidence for a universal fractal primate brain shape.

Elife. 2024-9-30

[7]
Survivor, family and professional experiences of psychosocial interventions for sexual abuse and violence: a qualitative evidence synthesis.

Cochrane Database Syst Rev. 2022-10-4

[8]
The quantity, quality and findings of network meta-analyses evaluating the effectiveness of GLP-1 RAs for weight loss: a scoping review.

Health Technol Assess. 2025-6-25

[9]
The Black Book of Psychotropic Dosing and Monitoring.

Psychopharmacol Bull. 2024-7-8

[10]
How lived experiences of illness trajectories, burdens of treatment, and social inequalities shape service user and caregiver participation in health and social care: a theory-informed qualitative evidence synthesis.

Health Soc Care Deliv Res. 2025-6

引用本文的文献

[1]
Infra-slow scale-free dynamics modulate the connection of neural and behavioral variability during attention.

Commun Biol. 2025-7-16

[2]
Is criticality a unified setpoint of brain function?

Neuron. 2025-8-20

[3]
Rényi entropy-complexity causality space: a novel neurocomputational tool for detecting scale-free features in EEG/iEEG data.

Front Comput Neurosci. 2024-7-15

[4]
Evolutionary Implications of Self-Assembling Cybernetic Materials with Collective Problem-Solving Intelligence at Multiple Scales.

Entropy (Basel). 2024-6-21

[5]
Low-dimensional criticality embedded in high-dimensional awake brain dynamics.

Sci Adv. 2024-4-26

[6]
Complexity Synchronization of Organ Networks.

Entropy (Basel). 2023-9-28

[7]
Brain criticality predicts individual levels of inter-areal synchronization in human electrophysiological data.

Nat Commun. 2023-8-7

[8]
Editorial: Deciphering population neuronal dynamics: from theories to experiments.

Front Syst Neurosci. 2023-4-20

本文引用的文献

[1]
Evidence for Quasicritical Brain Dynamics.

Phys Rev Lett. 2021-3-5

[2]
Relationship between simultaneously recorded spiking activity and fluorescence signal in GCaMP6 transgenic mice.

Elife. 2021-3-8

[3]
Efficient Lévy walks in virtual human foraging.

Sci Rep. 2021-3-4

[4]
Selective Participation of Single Cortical Neurons in Neuronal Avalanches.

Front Neural Circuits. 2020

[5]
Tuning network dynamics from criticality to an asynchronous state.

PLoS Comput Biol. 2020-9-28

[6]
Functional advantages of Lévy walks emerging near a critical point.

Proc Natl Acad Sci U S A. 2020-9-14

[7]
Movement and Performance Explain Widespread Cortical Activity in a Visual Detection Task.

Cereb Cortex. 2020-1-10

[8]
Cortical Circuit Dynamics Are Homeostatically Tuned to Criticality In Vivo.

Neuron. 2019-10-7

[9]
Single-trial neural dynamics are dominated by richly varied movements.

Nat Neurosci. 2019-9-24

[10]
25 years of criticality in neuroscience - established results, open controversies, novel concepts.

Curr Opin Neurobiol. 2019-9-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索