Suppr超能文献

通过有针对性地移除节点来改进网络中的社区检测

Improving community detection in networks by targeted node removal.

作者信息

Wen Haoran, Leicht E A, D'Souza Raissa M

机构信息

Department of Mechanical and Aerospace Engineering, University of California, Davis, California 95616, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jan;83(1 Pt 2):016114. doi: 10.1103/PhysRevE.83.016114. Epub 2011 Jan 28.

Abstract

How a network breaks up into subnetworks or communities is of wide interest. Here we show that vertices connected to many other vertices across a network can disturb the community structures of otherwise ordered networks, introducing noise. We investigate strategies to identify and remove noisy vertices ("violators") and develop a quantitative approach using statistical breakpoints to identify when the largest enhancement to a modularity measure is achieved. We show that removing nodes thus identified reduces noise in detected community structures for a range of different types of real networks in software systems and in biological systems.

摘要

一个网络如何分解为子网或群落是广受关注的问题。在这里,我们表明,在整个网络中与许多其他顶点相连的顶点会扰乱原本有序网络的群落结构,引入噪声。我们研究识别和去除噪声顶点(“违规者”)的策略,并开发一种定量方法,利用统计断点来确定何时对模块化度量的增强达到最大。我们表明,去除这样识别出的节点可以减少软件系统和生物系统中一系列不同类型真实网络检测到的群落结构中的噪声。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验