Suppr超能文献

发现社区之外的网络结构。

Discovering network structure beyond communities.

机构信息

Department of Mathematics, Clarkson University, Potsdam, NY 13699, USA.

出版信息

Sci Rep. 2011;1:151. doi: 10.1038/srep00151. Epub 2011 Nov 9.

Abstract

To understand the formation, evolution, and function of complex systems, it is crucial to understand the internal organization of their interaction networks. Partly due to the impossibility of visualizing large complex networks, resolving network structure remains a challenging problem. Here we overcome this difficulty by combining the visual pattern recognition ability of humans with the high processing speed of computers to develop an exploratory method for discovering groups of nodes characterized by common network properties, including but not limited to communities of densely connected nodes. Without any prior information about the nature of the groups, the method simultaneously identifies the number of groups, the group assignment, and the properties that define these groups. The results of applying our method to real networks suggest the possibility that most group structures lurk undiscovered in the fast-growing inventory of social, biological, and technological networks of scientific interest.

摘要

为了理解复杂系统的形成、演化和功能,了解其相互作用网络的内部组织至关重要。部分由于可视化大型复杂网络的不可能性,解析网络结构仍然是一个具有挑战性的问题。在这里,我们通过结合人类的视觉模式识别能力和计算机的高速处理能力,克服了这一困难,开发了一种用于发现具有共同网络属性的节点组的探索性方法,这些属性包括但不限于节点密度连接的社区。在没有关于组性质的任何先验信息的情况下,该方法同时确定组的数量、组分配以及定义这些组的属性。将我们的方法应用于真实网络的结果表明,大多数组结构可能潜伏在科学感兴趣的快速增长的社会、生物和技术网络目录中,尚未被发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c62c/3240966/be04c4f7d346/srep00151-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验