Suppr超能文献

一种新的用于强电子相关系统的重整化群方法。

A new renormalization group approach for systems with strong electron correlation.

机构信息

Department of Mathematics, Imperial College, London SW7 2AZ, UK.

出版信息

J Phys Condens Matter. 2011 Feb 2;23(4):045601. doi: 10.1088/0953-8984/23/4/045601. Epub 2011 Jan 7.

Abstract

The anomalous low energy behaviour observed in metals with strong electron correlation, such as in the heavy fermion materials, is believed to arise from the scattering of the itinerant electrons with low energy spin fluctuations. In systems with magnetic impurities this scattering leads to the Kondo effect and a low energy renormalized energy scale, the Kondo temperature T(K). It has been generally assumed that these low energy scales can only be accessed by a non-perturbative approach due to the strength of the local inter-electron interactions. Here we show that it is possible to circumvent this difficulty by first suppressing the spin fluctuations with a large magnetic field. As a first step field-dependent renormalized parameters are calculated using standard perturbation theory. A renormalized perturbation theory is then used to calculate the renormalized parameters for a reduced magnetic field strength. The process can be repeated and the flow of the renormalized parameters continued to zero magnetic field. We illustrate the viability of this approach for the single impurity Anderson model. The results for the renormalized parameters, which flow as a function of magnetic field, can be checked with those from numerical renormalization group and Bethe ansatz calculations.

摘要

在具有强电子关联的金属中观察到的异常低能行为,如重费米子材料中的行为,被认为是由巡游电子与低能自旋涨落的散射引起的。在具有磁性杂质的系统中,这种散射导致了近藤效应和低能重整化能标,即近藤温度 $T(K)$。由于局部电子相互作用的强度,通常假定这些低能标只能通过非微扰方法来获得。在这里,我们通过首先用大磁场抑制自旋涨落来绕过这个困难。作为第一步,使用标准微扰理论计算依赖于场的重整化参数。然后,使用重整化微扰理论来计算减小磁场强度的重整化参数。这个过程可以重复,并将重整化参数的流动延续到零磁场。我们用单杂质安德森模型来说明这种方法的可行性。作为磁场函数流动的重整化参数的结果,可以与数值重整化群和贝特假设计算的结果进行比较。

相似文献

1
A new renormalization group approach for systems with strong electron correlation.
J Phys Condens Matter. 2011 Feb 2;23(4):045601. doi: 10.1088/0953-8984/23/4/045601. Epub 2011 Jan 7.
2
Magnetoresistance in paramagnetic heavy fermion metals.
J Phys Condens Matter. 2009 Oct 7;21(40):405602. doi: 10.1088/0953-8984/21/40/405602. Epub 2009 Sep 14.
3
Convergence of energy scales on the approach to a local quantum critical point.
Phys Rev Lett. 2012 Feb 3;108(5):056402. doi: 10.1103/PhysRevLett.108.056402. Epub 2012 Jan 31.
4
A functional renormalization group approach to the Anderson impurity model.
J Phys Condens Matter. 2009 Jul 29;21(30):305602. doi: 10.1088/0953-8984/21/30/305602. Epub 2009 Jul 8.
5
Anomalous magnetic splitting of the kondo resonance.
Phys Rev Lett. 2000 Aug 21;85(8):1722-5. doi: 10.1103/PhysRevLett.85.1722.
6
Theory of inelastic scattering from magnetic impurities.
Phys Rev Lett. 2004 Sep 3;93(10):107204. doi: 10.1103/PhysRevLett.93.107204.
7
Anderson lattice with explicit Kondo coupling revisited: metamagnetism and the field-induced suppression of the heavy fermion state.
J Phys Condens Matter. 2012 May 23;24(20):205602. doi: 10.1088/0953-8984/24/20/205602. Epub 2012 Apr 18.
8
Scaling the Kondo lattice.
Nature. 2008 Jul 31;454(7204):611-3. doi: 10.1038/nature07157.
9
Kondo effect in the presence of itinerant-electron ferromagnetism studied with the numerical renormalization group method.
Phys Rev Lett. 2003 Dec 12;91(24):247202. doi: 10.1103/PhysRevLett.91.247202. Epub 2003 Dec 10.
10
Kondo physics in carbon nanotubes.
Nature. 2000 Nov 16;408(6810):342-6. doi: 10.1038/35042545.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验