Suppr超能文献

电话调查中不抽样手机的偏差:后分层调整的用途和限制。

Bias in telephone surveys that do not sample cell phones: uses and limits of poststratification adjustments.

机构信息

Division of Health Policy and Management, School of Public Health, SHADAC, University of Minnesota, Minneapolis, MN 55414, USA.

出版信息

Med Care. 2011 Apr;49(4):355-64. doi: 10.1097/MLR.0b013e3182028ac7.

Abstract

OBJECTIVE

To examine how biased health surveys are when they omit cell phone-only households (CPOH) and to explore whether poststratification can reduce this bias.

METHODS

We used data from the 2008 National Health Interview Survey (NHIS), which uses area probability sampling and in-person interviews; as a result people of all phone statuses are included. First, we examined whether people living in CPOH are different from those not living in CPOH with respect to several important health surveillance domains. We compared standard NHIS estimates to a set of "reweighted" estimates that exclude people living in CPHO. The reweighted NHIS cases were fitted through a series of poststratification adjustments to NHIS control totals. In addition to poststratification adjustments for region, race or ethnicity, and age, we examined adjustments for home ownership, age by education, and household structure.

RESULTS

Poststratification reduces bias in all health-related estimates for the nonelderly population. However, these adjustments work less well for Hispanics and blacks and even worse for young adults (18 to 30 y). Reduction in bias is greatest for estimates of uninsurance and having no usual source of care, and worse for estimates of drinking, smoking, and forgone or delayed care because of costs.

CONCLUSIONS

Applying poststratification adjustments to data that exclude CPOH works well at the total population level for estimates such as health insurance, and less well for access and health behaviors. However, poststratification adjustments do not do enough to reduce bias in health-related estimates at the subpopulation level, particularly for those interested in measuring and monitoring racial, ethnic, and age disparities.

摘要

目的

研究在忽略仅使用手机家庭(CPOH)的情况下,健康调查会产生多大的偏差,并探讨事后分层是否可以减少这种偏差。

方法

我们使用了 2008 年全国健康访谈调查(NHIS)的数据,该调查采用区域概率抽样和面对面访谈;因此包括了所有电话使用情况的人群。首先,我们研究了仅使用手机家庭与非仅使用手机家庭在几个重要的健康监测领域是否存在差异。我们将标准 NHIS 估计值与一组排除仅使用手机家庭的“重新加权”估计值进行了比较。通过对 NHIS 控制总数进行一系列事后分层调整来拟合重新加权的 NHIS 病例。除了针对地区、种族或民族以及年龄的事后分层调整外,我们还研究了针对房屋所有权、年龄与教育程度以及家庭结构的调整。

结果

事后分层调整减少了非老年人群所有与健康相关的估计值的偏差。然而,这些调整对于西班牙裔和非裔美国人的效果较差,对于 18 至 30 岁的年轻人效果更差。对于未参保和没有常规医疗服务来源的估计值,调整后的偏差减少幅度最大,而对于因费用而放弃或延迟医疗的估计值,调整后的偏差则较小。

结论

对于排除 CPOH 的数据应用事后分层调整在总体人群的健康保险等估计值方面效果良好,但在获取医疗服务和健康行为方面效果较差。然而,事后分层调整并不能充分减少亚人群层面与健康相关的估计值的偏差,特别是对于那些有兴趣测量和监测种族、民族和年龄差异的人。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验