Instituto de Física Interdisciplinar y Sistemas Complejos (CSIC-UIB), Campus Universitat de les Illes Balears, Palma de Mallorca, Spain.
PLoS One. 2011 Mar 8;6(3):e17756. doi: 10.1371/journal.pone.0017756.
Growing evidence suggests that synchronization among distributed neuronal networks underlie functional integration in the brain. Neural synchronization is typically revealed by a consistent phase delay between neural responses generated in two separated sources. But the influence of a third neuronal assembly in that synchrony pattern remains largely unexplored. We investigate here the potential role of the hippocampus in determining cortico-cortical theta synchronization in different behavioral states during motor quiescent and while animals actively explore the environment. To achieve this goal, the two states were modeled with a recurrent network involving the hippocampus, as a relay element, and two distant neocortical sites. We found that cortico-cortical neural coupling accompanied higher hippocampal theta oscillations in both behavioral states, although the highest level of synchronization between cortical regions emerged during motor exploration. Local field potentials recorded from the same brain regions qualitatively confirm these findings in the two behavioral states. These results suggest that zero-lag long-range cortico-cortical synchronization is likely mediated by hippocampal theta oscillations in lower mammals as a function of cognitive demands and motor acts.
越来越多的证据表明,分布式神经元网络之间的同步是大脑功能整合的基础。神经同步通常通过在两个分离的源中产生的神经反应之间的一致相位延迟来揭示。但是,第三个神经元集合对该同步模式的影响在很大程度上仍未得到探索。在这里,我们研究了海马体在确定运动静止和动物主动探索环境期间不同行为状态下皮质间θ同步中的潜在作用。为了实现这一目标,使用涉及海马体的递归网络对两种状态进行了建模,作为中继元件和两个遥远的新皮层部位。我们发现,皮质间神经耦合伴随着两种行为状态中海马体θ振荡的增加,尽管在运动探索期间皮质区域之间出现了最高水平的同步。从同一大脑区域记录的局部场电位在两种行为状态中定性地证实了这些发现。这些结果表明,零延迟长程皮质间同步很可能是由较低哺乳动物的海马体θ振荡介导的,作为认知需求和运动行为的功能。