Department of Neurobiology and Anatomy, College of Medicine and School of Bioengineering and Health Science, Drexel University, Philadelphia, Pennsylvania 19129, USA.
J Neurosci. 2011 Feb 23;31(8):3110-28. doi: 10.1523/JNEUROSCI.2335-10.2011.
Brain-machine interfaces (BMIs) should ideally show robust adaptation of the BMI across different tasks and daily activities. Most BMIs have used overpracticed tasks. Little is known about BMIs in dynamic environments. How are mechanically body-coupled BMIs integrated into ongoing rhythmic dynamics, for example, in locomotion? To examine this, we designed a novel BMI using neural discharge in the hindlimb/trunk motor cortex in rats during locomotion to control a robot attached at the pelvis. We tested neural adaptation when rats experienced (1) control locomotion, (2) "simple elastic load" (a robot load on locomotion without any BMI neural control), and (3) "BMI with elastic load" (in which the robot loaded locomotion and a BMI neural control could counter this load). Rats significantly offset applied loads with the BMI while preserving more normal pelvic height compared with load alone. Adaptation occurred over ∼100-200 step cycles in a trial. Firing rates increased in both the loaded conditions compared with baseline. Mean phases of the discharge of cells in the step cycle shifted significantly between BMI and the simple load condition. Over time, more BMI cells became positively correlated with the external force and modulated more deeply, and the network correlations of neurons on a 100 ms timescale increased. Loading alone showed none of these effects. The BMI neural changes of rate and force correlations persisted or increased over repeated trials. Our results show that rats have the capacity to use motor adaptation and motor learning to fairly rapidly engage hindlimb/trunk-coupled BMIs in their locomotion.
脑机接口(BMIs)理想情况下应在不同任务和日常活动中表现出对 BMI 的稳健适应。大多数 BMI 都使用了过度练习的任务。在动态环境中,BMI 的情况知之甚少。例如,在运动中,机械的身体耦合 BMI 如何融入正在进行的节奏动态?为了研究这一点,我们设计了一种使用大鼠在运动过程中后腿/躯干运动皮层神经放电来控制附着在骨盆上的机器人的新型 BMI。我们测试了大鼠在以下情况下的神经适应:(1)控制运动,(2)“简单弹性负载”(机器人在没有任何 BMI 神经控制的情况下加载运动),和(3)“带有弹性负载的 BMI”(其中机器人加载运动,并且 BMI 神经控制可以抵消这种负载)。与单独加载相比,大鼠在使用 BMI 时可以显著抵消施加的负载,同时保持骨盆高度更正常。在一次试验中,适应过程发生在约 100-200 个步周期中。与基线相比,加载条件下的放电率都增加了。细胞在步周期中的放电的平均相位在 BMI 和简单负载条件之间发生了显著变化。随着时间的推移,更多的 BMI 细胞与外力呈正相关,并被更深地调制,神经元的网络相关性在 100ms 的时间尺度上增加。单独加载没有显示出这些效果。BMI 神经变化的速率和力相关性在重复试验中持续或增加。我们的结果表明,大鼠有能力使用运动适应和运动学习来相当快速地参与其运动中的后肢/躯干耦合 BMI。