Suppr超能文献

在大鼠运动过程中,通过点过程广义线性模型研究对弹性负荷和体重指数机器人控制的适应性。

Adaptation to elastic loads and BMI robot controls during rat locomotion examined with point-process GLMs.

作者信息

Song Weiguo, Cajigas Iahn, Brown Emery N, Giszter Simon F

机构信息

Department of Neurobiology and Anatomy, Drexel University College of Medicine, Drexel University Philadelphia, PA, USA.

Brain and Cognitive Sciences, Massachusetts Institute of Technology Cambridge, MA, USA.

出版信息

Front Syst Neurosci. 2015 Apr 28;9:62. doi: 10.3389/fnsys.2015.00062. eCollection 2015.

Abstract

Currently little is known about how a mechanically coupled BMI system's actions are integrated into ongoing body dynamics. We tested a locomotor task augmented with a BMI system driving a robot mechanically interacting with a rat under three conditions: control locomotion (BL), "simple elastic load" (E) and "BMI with elastic load" (BMI/E). The effect of the BMI was to allow compensation of the elastic load as a function of the neural drive. Neurons recorded here were close to one another in cortex, all within a 200 micron diameter horizontal distance of one another. The interactions of these close assemblies of neurons may differ from those among neurons at longer distances in BMI tasks and thus are important to explore. A point process generalized linear model (GLM), was used to examine connectivity at two different binning timescales (1 ms vs. 10 ms). We used GLM models to fit non-Poisson neural dynamics solely using other neurons' prior neural activity as covariates. Models at different timescales were compared based on Kolmogorov-Smirnov (KS) goodness-of-fit and parsimony. About 15% of cells with non-Poisson firing were well fitted with the neuron-to-neuron models alone. More such cells were fitted at the 1 ms binning than 10 ms. Positive connection parameters ("excitation" 70%) exceeded negative parameters ("inhibition" ~30%). Significant connectivity changes in the GLM determined networks of well-fitted neurons occurred between the conditions. However, a common core of connections comprising at least ~15% of connections persisted between any two of the three conditions. Significantly almost twice as many connections were in common between the two load conditions (27%), compared to between either load condition and the baseline. This local point process GLM identified neural correlation structure and the changes seen across task conditions in the rats in this neural subset may be intrinsic to cortex or due to feedback and input reorganization in adaptation.

摘要

目前,对于机械耦合的脑机接口(BMI)系统的动作是如何融入正在进行的身体动态,人们知之甚少。我们测试了一项运动任务,该任务在三种条件下通过BMI系统驱动与大鼠机械交互的机器人进行增强:对照运动(BL)、“简单弹性负载”(E)和“带弹性负载的BMI”(BMI/E)。BMI的作用是根据神经驱动来补偿弹性负载。这里记录的神经元在皮层中彼此靠近,都在彼此200微米直径的水平距离内。在BMI任务中,这些紧密的神经元集合之间的相互作用可能与距离较远的神经元之间的相互作用不同,因此探索它们很重要。使用点过程广义线性模型(GLM)来检查两种不同的分箱时间尺度(1毫秒对10毫秒)下的连接性。我们使用GLM模型仅将其他神经元的先前神经活动作为协变量来拟合非泊松神经动力学。基于柯尔莫哥洛夫-斯米尔诺夫(KS)拟合优度和简约性对不同时间尺度的模型进行比较。约15%具有非泊松放电的细胞仅通过神经元对神经元模型就能很好地拟合。在1毫秒分箱时拟合的此类细胞比10毫秒时更多。正向连接参数(“兴奋”约70%)超过负向参数(“抑制”约30%)。GLM确定的拟合良好的神经元网络在不同条件之间发生了显著的连接性变化。然而,在三种条件中的任意两种之间,至少约15%的连接组成的共同核心连接持续存在。与任一负载条件和基线之间相比,两种负载条件之间共同的连接数量几乎是其两倍(约27%)。这种局部点过程GLM识别出神经相关结构,并且在这个神经子集中大鼠跨任务条件看到的变化可能是皮层固有的,或者是由于适应过程中的反馈和输入重组。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4151/4411868/7d107b411f3d/fnsys-09-00062-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验