Suppr超能文献

用于脑机接口的植入式神经探针——当前进展与未来前景

Implantable Neural Probes for Brain-Machine Interfaces - Current Developments and Future Prospects.

作者信息

Choi Jong-Ryul, Kim Seong-Min, Ryu Rae-Hyung, Kim Sung-Phil, Sohn Jeong-Woo

机构信息

Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea.

Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung 25601, Korea.

出版信息

Exp Neurobiol. 2018 Dec;27(6):453-471. doi: 10.5607/en.2018.27.6.453. Epub 2018 Dec 28.

Abstract

A Brain-Machine interface (BMI) allows for direct communication between the brain and machines. Neural probes for recording neural signals are among the essential components of a BMI system. In this report, we review research regarding implantable neural probes and their applications to BMIs. We first discuss conventional neural probes such as the tetrode, Utah array, Michigan probe, and electroencephalography (ECoG), following which we cover advancements in next-generation neural probes. These next-generation probes are associated with improvements in electrical properties, mechanical durability, biocompatibility, and offer a high degree of freedom in practical settings. Specifically, we focus on three key topics: (1) novel implantable neural probes that decrease the level of invasiveness without sacrificing performance, (2) multi-modal neural probes that measure both electrical and optical signals, (3) and neural probes developed using advanced materials. Because safety and precision are critical for practical applications of BMI systems, future studies should aim to enhance these properties when developing next-generation neural probes.

摘要

脑机接口(BMI)允许大脑与机器之间进行直接通信。用于记录神经信号的神经探针是BMI系统的重要组成部分之一。在本报告中,我们回顾了关于可植入神经探针及其在BMI中的应用的研究。我们首先讨论传统的神经探针,如四极管、犹他阵列、密歇根探针和脑电图(ECoG),随后介绍下一代神经探针的进展。这些下一代探针在电学性能、机械耐久性、生物相容性方面有所改进,并在实际应用中具有高度的自由度。具体而言,我们关注三个关键主题:(1)在不牺牲性能的情况下降低侵入性的新型可植入神经探针,(2)同时测量电信号和光信号的多模态神经探针,(3)使用先进材料开发的神经探针。由于安全性和精度对于BMI系统的实际应用至关重要,未来的研究在开发下一代神经探针时应致力于增强这些特性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35e/6318554/e6c1d27f6dc9/en-27-453-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验