Kordyukova Larisa V, Serebryakova Marina V, Polyansky Anton A, Kropotkina Ekaterina A, Alexeevski Andrei V, Veit Michael, Efremov Roman G, Filippova Irina Yu, Baratova Lyudmila A
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
Biochim Biophys Acta. 2011 Jul;1808(7):1843-54. doi: 10.1016/j.bbamem.2011.03.005. Epub 2011 Mar 21.
Influenza virus hemagglutinin is a homotrimeric spike glycoprotein crucial for virions' attachment, membrane fusion, and assembly reactions. X-ray crystallography data are available for hemagglutinin ectodomains of various types/subtypes but not for anchoring segments. To get structural information for the linker and transmembrane regions of hemagglutinin, influenza A (H1-H16 subtypes except H8 and H15) and B viruses were digested with bromelain or subtilisin Carlsberg, either within virions or in non-ionic detergent micelles. Proteolytical fragments were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Within virions, hemagglutinins of most influenza A/Group-1 and type B virus strains were more susceptible to digestion with bromelain and/or subtilisin compared to A/Group-2 hemagglutinins. The cleavage sites were always located in the hemagglutinin linker sequence. In detergent, 1) bromelain cleaved hemagglutinin of every influenza A subtype in the linker region; 2) subtilisin cleaved Group-2 hemagglutinins in the linker region; 3) subtilisin cleaved Group-1 hemagglutinins in the transmembrane region; 4) both enzymes cleaved influenza B virus hemagglutinin in the transmembrane region. We propose that the A/Group-2 hemagglutinin linker and/or transmembrane regions are more tightly associated within trimers than type A/Group-1 and particularly type B ones. This hypothesis is underpinned by spatial trimeric structure modeling performed for transmembrane regions of both Group-1 and Group-2 hemagglutinin representatives. Differential S-acylation of the hemagglutinin C-terminal anchoring segment with palmitate/stearate residues possibly contributes to fine tuning of transmembrane trimer packing and stabilization since decreased stearate amount correlated with deeper digestion of influenza B and some A/Group-1 hemagglutinins.
流感病毒血凝素是一种同源三聚体刺突糖蛋白,对病毒粒子的附着、膜融合和组装反应至关重要。目前已有各种类型/亚型血凝素胞外域的X射线晶体学数据,但锚定片段的数据尚未获得。为了获取血凝素连接区和跨膜区的结构信息,用菠萝蛋白酶或嗜热栖热芽孢杆菌蛋白酶处理甲型(H1 - H16亚型,H8和H15除外)和乙型流感病毒,处理过程在病毒粒子内或非离子去污剂胶束中进行。通过十二烷基硫酸钠 - 聚丙烯酰胺凝胶电泳和基质辅助激光解吸/电离飞行时间质谱对蛋白水解片段进行分析。在病毒粒子内,与甲型/第2组血凝素相比,大多数甲型/第1组和乙型流感病毒株的血凝素对菠萝蛋白酶和/或嗜热栖热芽孢杆菌蛋白酶的消化更敏感。切割位点总是位于血凝素连接序列中。在去污剂中,1)菠萝蛋白酶在连接区切割每种甲型流感病毒亚型的血凝素;2)嗜热栖热芽孢杆菌蛋白酶在连接区切割第2组血凝素;3)嗜热栖热芽孢杆菌蛋白酶在跨膜区切割第1组血凝素;4)两种酶都在跨膜区切割乙型流感病毒血凝素。我们提出,甲型/第2组血凝素连接区和/或跨膜区在三聚体内的结合比甲型/第1组尤其是乙型的更紧密。这一假设得到了对第1组和第2组血凝素代表的跨膜区进行的空间三聚体结构建模的支持。血凝素C末端锚定片段与棕榈酸/硬脂酸残基的差异S - 酰化可能有助于微调跨膜三聚体的堆积和稳定性,因为硬脂酸含量的降低与乙型流感病毒和一些甲型/第1组血凝素的更深层次消化相关。