Department of Electronic Chemistry, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midoriku, Yokohama 226-8502, Japan.
Phys Chem Chem Phys. 2011 Apr 28;13(16):7459-66. doi: 10.1039/c0cp02953j. Epub 2011 Mar 21.
This paper describes unique plasmonic characteristics of two dimensional (2D) crystalline sheets composed of homogeneous Ag nanoparticles (AgNPs) fabricated by the Langmuir-Schaefer method at an air-water interface. The localized surface plasmon resonance (LSPR) band of the Ag nanosheet was tuned by changing the interparticle distance of AgNPs via the length of the organic capping molecules. Red shift of the LSPR band of the AgNPs sheet followed an exponential law against the interparticle distance in a similar manner to the previous reports of metal nanodisc pairs. However, the shift was much larger and less dependent on the interparticle separation gap. This phenomenon is reasonably interpreted as the long-range interaction of LSPR in the 2D sheet ('delocalized' LSPR) confirmed by simulation using the finite difference time domain (FDTD) method. The FDTD simulation also revealed additional enhancement of local electric fields on the 2D sheet compared to those on the single or paired particles.
本文描述了在空气-水界面通过 Langmuir-Schaefer 方法制备的二维(2D)由均匀 Ag 纳米颗粒(AgNPs)组成的晶体薄片的独特等离子体特性。通过改变有机覆盖分子的长度,可以改变 AgNPs 之间的粒子间距离,从而调节 Ag 纳米片的局域表面等离子体共振(LSPR)带。与之前关于金属纳米盘对的报告类似,AgNPs 片的 LSPR 带的红移随粒子间距离呈指数规律变化。然而,这种变化大得多,并且与粒子间分离间隙的依赖性较小。这种现象可以通过使用有限差分时间域(FDTD)方法进行的模拟来合理解释为二维薄片中的 LSPR 的长程相互作用(“离域”LSPR)。FDTD 模拟还表明,与单个或成对的粒子相比,二维薄片上的局部电场得到了额外的增强。