Suppr超能文献

用于电动设备的电解还原电极。

Electrolysis-reducing electrodes for electrokinetic devices.

机构信息

Transport and Separations Group, Department of Physics, Chemistry, and Biology, Linköping University, Linköping, Sweden.

出版信息

Electrophoresis. 2011 Mar;32(6-7):784-90. doi: 10.1002/elps.201000617.

Abstract

Direct current electrokinetic systems generally require Faradaic reactions to occur at a pair of electrodes to maintain an electric field in an electrolyte connecting them. The vast majority of such systems, e.g. electrophoretic separations (capillary electrophoresis) or electroosmotic pumps (EOPs), employ electrolysis of the solvent in these reactions. In many cases, the electrolytic products, such as H+ and OH⁻ in the case of water, can negatively influence the chemical or biological species being transported or separated, and gaseous products such as O₂ and H₂ can break the electrochemical circuit in microfluidic devices. This article presents an EOP that employs the oxidation/reduction of the conjugated polymer poly(3,4-ethylenedioxythiophene), rather than electrolysis of a solvent, to drive flow in a capillary. Devices made with poly(3,4-ethylenedioxythiophene) electrodes are compared with devices made with Pt electrodes in terms of flow and local pH change at the electrodes. Furthermore, we demonstrate that flow is driven for applied potentials under 2 V, and the electrodes are stable for potentials of at least 100 V. Electrochemically active electrodes like those presented here minimize the disadvantage of integrated EOP in, e.g. lab-on-a-chip applications, and may open new possibilities, especially for battery-powered disposable point-of-care devices.

摘要

直流电动系统通常需要在一对电极处发生法拉第反应,以在连接它们的电解质中维持电场。此类系统中的绝大多数,例如电泳分离(毛细管电泳)或电动渗透泵(EOP),在这些反应中使用溶剂的电解。在许多情况下,电解产物(例如水的情况下的 H+和 OH⁻)可能会对被输送或分离的化学或生物物质产生负面影响,而气态产物(例如 O₂和 H₂)会破坏微流控设备中的电化学电路。本文提出了一种 EOP,它采用共轭聚合物聚(3,4-亚乙基二氧噻吩)的氧化/还原反应,而不是溶剂的电解,来驱动毛细管中的流动。比较了使用聚(3,4-亚乙基二氧噻吩)电极的设备与使用 Pt 电极的设备在电极处的流动和局部 pH 变化方面的性能。此外,我们证明在 2V 以下的外加电势下可以驱动流动,并且这些电极在至少 100V 的电势下稳定。像这里提出的电化学活性电极可以最小化集成 EOP 在例如芯片实验室应用中的缺点,并可能开辟新的可能性,特别是对于电池供电的一次性即时护理设备。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验