Faculty of Computer Science, Bialystok University of Technology, Bialystok, Poland.
Adv Exp Med Biol. 2011;696:27-35. doi: 10.1007/978-1-4419-7046-6_3.
Classification problems of microarray data may be successfully performed with approaches by human experts which are easy to understand and interpret, like decision trees or Top Scoring Pairs algorithms. In this chapter, we propose a hybrid solution that combines the above-mentioned methods. An application of presented decision trees, which splits instances based on pairwise comparisons of the gene expression values, may have considerable potential for genomic research and scientific modeling of underlying processes. We have compared proposed solution with the TSP-family methods and decision trees on 11 public domain microarray datasets and the results are promising.
基于决策树或最佳配对算法等易于理解和解释的方法,微阵列数据的分类问题可以得到成功解决,这些方法是由人类专家提出的。在本章中,我们提出了一种混合解决方案,它结合了上述方法。所提出的决策树的应用,即根据基因表达值的两两比较来划分实例,在基因组研究和潜在过程的科学建模方面具有很大的潜力。我们已经在 11 个公共领域的微阵列数据集上对提出的解决方案与 TSP 家族的方法和决策树进行了比较,结果令人鼓舞。