Czajkowski Marcin, Kretowski Marek
Faculty of Computer Science, Bialystok University of Technology, Wiejska 45a, 15-351 Białystok, Poland.
ScientificWorldJournal. 2014 Mar 23;2014:593503. doi: 10.1155/2014/593503. eCollection 2014.
A Relative Expression Analysis (RXA) uses ordering relationships in a small collection of genes and is successfully applied to classiffication using microarray data. As checking all possible subsets of genes is computationally infeasible, the RXA algorithms require feature selection and multiple restrictive assumptions. Our main contribution is a specialized evolutionary algorithm (EA) for top-scoring pairs called EvoTSP which allows finding more advanced gene relations. We managed to unify the major variants of relative expression algorithms through EA and introduce weights to the top-scoring pairs. Experimental validation of EvoTSP on public available microarray datasets showed that the proposed solution significantly outperforms in terms of accuracy other relative expression algorithms and allows exploring much larger solution space.
相对表达分析(RXA)利用一小部分基因中的排序关系,并成功应用于使用微阵列数据的分类。由于检查基因的所有可能子集在计算上是不可行的,RXA算法需要进行特征选择并做出多个限制性假设。我们的主要贡献是一种针对得分最高的基因对的专门进化算法(EA),称为EvoTSP,它能够找到更高级的基因关系。我们通过EA成功统一了相对表达算法的主要变体,并为得分最高的基因对引入了权重。在公开可用的微阵列数据集上对EvoTSP进行的实验验证表明,所提出的解决方案在准确性方面显著优于其他相对表达算法,并且能够探索大得多的解决方案空间。