EA 4275 'Biostatistics, Clinical Research and Subjective Measures in Health Sciences', Faculty of Pharmaceutical Sciences, University of Nantes, Nantes, France.
Stat Med. 2011 Apr 15;30(8):825-38. doi: 10.1002/sim.4153. Epub 2010 Dec 28.
Health sciences frequently deal with Patient Reported Outcomes (PRO) data for the evaluation of concepts, in particular health-related quality of life, which cannot be directly measured and are often called latent variables. Two approaches are commonly used for the analysis of such data: Classical Test Theory (CTT) and Item Response Theory (IRT). Longitudinal data are often collected to analyze the evolution of an outcome over time. The most adequate strategy to analyze longitudinal latent variables, which can be either based on CTT or IRT models, remains to be identified. This strategy must take into account the latent characteristic of what PROs are intended to measure as well as the specificity of longitudinal designs. A simple and widely used IRT model is the Rasch model. The purpose of our study was to compare CTT and Rasch-based approaches to analyze longitudinal PRO data regarding type I error, power, and time effect estimation bias. Four methods were compared: the Score and Mixed models (SM) method based on the CTT approach, the Rasch and Mixed models (RM), the Plausible Values (PV), and the Longitudinal Rasch model (LRM) methods all based on the Rasch model. All methods have shown comparable results in terms of type I error, all close to 5 per cent. LRM and SM methods presented comparable power and unbiased time effect estimations, whereas RM and PV methods showed low power and biased time effect estimations. This suggests that RM and PV methods should be avoided to analyze longitudinal latent variables.
健康科学经常处理患者报告的结果(PRO)数据,用于评估概念,特别是与健康相关的生活质量,这些概念不能直接测量,通常被称为潜在变量。有两种常用的方法可用于分析此类数据:经典测试理论(CTT)和项目反应理论(IRT)。通常收集纵向数据来分析结果随时间的演变。为了分析基于 CTT 或 IRT 模型的纵向潜在变量,最适合的策略仍然需要确定。该策略必须考虑到 PRO 旨在测量的潜在特征以及纵向设计的特异性。一个简单且广泛使用的 IRT 模型是 Rasch 模型。我们的研究目的是比较 CTT 和基于 Rasch 的方法来分析关于第一类错误、功效和时间效应估计偏差的纵向 PRO 数据。比较了四种方法:基于 CTT 方法的得分和混合模型(SM)方法、Rasch 和混合模型(RM)方法、似然值(PV)方法和基于 Rasch 模型的纵向 Rasch 模型(LRM)方法。所有方法在第一类错误方面均表现出可比的结果,均接近 5%。LRM 和 SM 方法的功效和无偏时间效应估计相似,而 RM 和 PV 方法的功效和时间效应估计存在偏差。这表明 RM 和 PV 方法应避免用于分析纵向潜在变量。