Suppr超能文献

一种分析问卷中频繁观察结果的新方法,用于建立患者报告结局模型:在 COPD 患者的 EXACT® 日常日记数据中的应用。

A Novel Method for Analysing Frequent Observations from Questionnaires in Order to Model Patient-Reported Outcomes: Application to EXACT® Daily Diary Data from COPD Patients.

机构信息

Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-751 24, Uppsala, Sweden.

Clinical Pharmacology Modelling and Simulation, GlaxoSmithKline, London, UK.

出版信息

AAPS J. 2019 Apr 26;21(4):60. doi: 10.1208/s12248-019-0319-9.

Abstract

Chronic obstructive pulmonary disease (COPD) is a progressive lung disease with approximately 174 million cases worldwide. Electronic questionnaires are increasingly used for collecting patient-reported-outcome (PRO) data about disease symptoms. Our aim was to leverage PRO data, collected to record COPD disease symptoms, in a general modelling framework to enable interpretation of PRO observations in relation to disease progression and potential to predict exacerbations. The data were collected daily over a year, in a prospective, observational study. The e-questionnaire, the EXAcerbations of COPD Tool (EXACT®) included 14 items (i.e. questions) with 4 or 5 ordered categorical response options. An item response theory (IRT) model was used to relate the responses from each item to the underlying latent variable (which we refer to as disease severity), and on each item level, Markov models (MM) with 4 or 5 categories were applied to describe the dependence between consecutive observations. Minimal continuous time MMs were used and parameterised using ordinary differential equations. One hundred twenty-seven COPD patients were included (median age 67 years, 54% male, 39% current smokers), providing approximately 40,000 observations per EXACT® item. The final model suggested that, with time, patients more often reported the same scores as the previous day, i.e. the scores were more stable. The modelled COPD disease severity change over time varied markedly between subjects, but was small in the typical individual. This is the first IRT model with Markovian properties; our analysis proved them necessary for predicting symptom-defined exacerbations.

摘要

慢性阻塞性肺疾病(COPD)是一种全球性疾病,全球约有 1.74 亿例。电子问卷越来越多地用于收集关于疾病症状的患者报告结局(PRO)数据。我们的目的是利用 PRO 数据,这些数据是为记录 COPD 疾病症状而收集的,将其纳入一般建模框架,以解释 PRO 观察结果与疾病进展的关系,并预测疾病恶化的可能性。这些数据是在一项前瞻性观察研究中,通过每日电子问卷收集的,为期一年。电子问卷为 EXAcerbations of COPD Tool(EXACT®),包含 14 个项目(即问题),每个项目有 4 或 5 个有序分类选项。我们使用项目反应理论(IRT)模型将每个项目的反应与潜在的潜在变量(我们称之为疾病严重程度)联系起来,并在每个项目水平上,应用具有 4 或 5 个类别的马尔可夫模型(MM)来描述连续观察之间的依赖关系。使用最小连续时间 MM,并使用常微分方程进行参数化。共纳入 127 例 COPD 患者(中位年龄 67 岁,54%为男性,39%为当前吸烟者),每个 EXACT®项目提供约 40,000 次观察。最终模型表明,随着时间的推移,患者更频繁地报告与前一天相同的分数,即分数更稳定。模型预测的 COPD 疾病严重程度随时间的变化在个体之间差异很大,但在典型个体中变化很小。这是第一个具有马尔可夫特性的 IRT 模型;我们的分析证明,这些特性对于预测症状定义的恶化是必要的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6b9/6486532/23588c8ed70d/12248_2019_319_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验