Suppr超能文献

根据基于枚举的统计分析预测拟南芥和水稻中的新非生物胁迫基因。

Prediction of new abiotic stress genes in Arabidopsis thaliana and Oryza sativa according to enumeration-based statistical analysis.

机构信息

Biological Research Center, Institute of Plant Biology, Hungarian Academy of Sciences, P.O. BOX 521, Temesvári Krt. 62, 6701 Szeged, Hungary.

出版信息

Mol Genet Genomics. 2011 May;285(5):375-91. doi: 10.1007/s00438-011-0605-4. Epub 2011 Mar 25.

Abstract

Plants undergo an extensive change in gene regulation during abiotic stress. It is of great agricultural importance to know which genes are affected during stress response. The genome sequence of a number of plant species has been determined, among them Arabidopsis and Oryza sativa, whose genome has been annotated most completely as of yet, and are well-known organisms widely used as experimental systems. This paper applies a statistical algorithm for predicting new stress-induced motifs and genes by analyzing promoter sets co-regulated by abiotic stress in the previously mentioned two species. After identifying characteristic putative regulatory motif sequence pairs (dyads) in the promoters of 125 stress-regulated Arabidopsis genes and 87 O. sativa genes, these dyads were used to screen the entire Arabidopsis and O. sativa promoteromes to find related stress-induced genes whose promoters contained a large number of these dyads found by our algorithm. We were able to predict a number of putative dyads, characteristic of a large number of stress-regulated genes, some of them newly discovered by our algorithm and serve as putative transcription factor binding sites. Our new motif prediction algorithm comes complete with a stand-alone program. This algorithm may be used in motif discovery in the future in other species. The more than 1,200 Arabidopsis and 1,700 Orzya sativa genes found by our algorithm are good candidates for further experimental studies in abiotic stress.

摘要

植物在非生物胁迫下经历广泛的基因调控变化。了解哪些基因在应激反应中受到影响对农业具有重要意义。许多植物物种的基因组序列已经被确定,其中包括 Arabidopsis 和 Oryza sativa,它们的基因组迄今为止被注释得最为完整,并且是作为实验系统广泛使用的知名生物。本文应用一种统计算法,通过分析上述两种物种中受非生物胁迫共同调控的启动子集,预测新的应激诱导基序和基因。在鉴定了 125 个应激调节的 Arabidopsis 基因和 87 个 O. sativa 基因启动子中的特征假定调节基序对(对偶)之后,这些对偶被用于筛选整个 Arabidopsis 和 O. sativa 启动子组,以找到与我们的算法发现的大量对偶相关的应激诱导基因,这些基因的启动子中包含大量我们的算法发现的对偶。我们能够预测许多假定的对偶,这些对偶是大量应激调节基因的特征,其中一些是我们的算法新发现的,可作为假定的转录因子结合位点。我们的新基序预测算法带有一个独立的程序。该算法将来可用于其他物种中的基序发现。我们的算法发现的超过 1200 个 Arabidopsis 和 1700 个 Oryza sativa 基因是进一步进行非生物胁迫实验研究的良好候选基因。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验