National Centre for Biological Sciences (TIFR), GKVK Campus, Bellary Road, Bangalore, India.
Plant Cell Physiol. 2013 Feb;54(2):e8. doi: 10.1093/pcp/pcs185. Epub 2013 Jan 10.
Understanding the principles of abiotic and biotic stress responses, tolerance and adaptation remains important in plant physiology research to develop better varieties of crop plants. Better understanding of plant stress response mechanisms and application of knowledge derived from integrated experimental and bioinformatics approaches are gaining importance. Earlier, we showed that compiling a database of stress-responsive transcription factors and their corresponding target binding sites in the form of Hidden Markov models at promoter, untranslated and upstream regions of stress-up-regulated genes from expression analysis can help in elucidating various aspects of the stress response in Arabidopsis. In addition to the extensive content in the first version, STIFDB2 is now updated with 15 stress signals, 31 transcription factors and 5,984 stress-responsive genes from three species (Arabidopsis thaliana, Oryza sativa subsp. japonica and Oryza sativa subsp. indica). We have employed an integrated biocuration and genomic data mining approach to characterize the data set of transcription factors and consensus binding sites from literature mining and stress-responsive genes from the Gene Expression Omnibus. STIFDB2 currently has 38,798 associations of stress signals, stress-responsive genes and transcription factor binding sites predicted using the Stress-responsive Transcription Factor (STIF) algorithm, along with various functional annotation data. As a unique plant stress regulatory genomics data platform, STIFDB2 can be utilized for targeted as well as high-throughput experimental and computational studies to unravel principles of the stress regulome in dicots and gramineae. STIFDB2 is available from the URL: http://caps.ncbs.res.in/stifdb2.
了解非生物和生物胁迫响应、耐受和适应的原理在植物生理学研究中仍然很重要,这有助于培育更好的作物品种。更好地理解植物胁迫响应机制,并应用综合实验和生物信息学方法获得的知识正变得越来越重要。之前,我们表明,通过将胁迫响应转录因子及其在启动子、非翻译区和受表达分析调控的基因上游区的相应靶标结合位点的数据库,以隐马尔可夫模型的形式进行编译,有助于阐明拟南芥胁迫响应的各个方面。除了第一版的广泛内容外,STIFDB2 现在更新了 15 种胁迫信号、31 种转录因子和来自 3 个物种(拟南芥、水稻亚种粳稻和籼稻)的 5984 个胁迫响应基因。我们采用了综合生物注释和基因组数据挖掘方法,从文献挖掘中对转录因子和共识结合位点数据集进行了特征描述,并从基因表达综合数据库中对胁迫响应基因进行了特征描述。STIFDB2 目前有 38798 个胁迫信号、胁迫响应基因和转录因子结合位点的关联,这些关联是使用应激响应转录因子(STIF)算法预测的,同时还有各种功能注释数据。作为一个独特的植物应激调控基因组学数据平台,STIFDB2 可用于靶向和高通量实验以及计算研究,以揭示双子叶植物和禾本科植物应激调控组学的原理。STIFDB2 可从以下网址获取:http://caps.ncbs.res.in/stifdb2。