文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

睡眠周期性交替模式中 A 相的特征。

Characterization of A phases during the cyclic alternating pattern of sleep.

机构信息

Politecnico di Milano, Department of Biomedical Engineering, P.zza Leonardo da Vinci 32, 20133 Milan, Italy.

出版信息

Clin Neurophysiol. 2011 Oct;122(10):2016-24. doi: 10.1016/j.clinph.2011.02.031. Epub 2011 Mar 24.


DOI:10.1016/j.clinph.2011.02.031
PMID:21439902
Abstract

OBJECTIVE: This study aims to identify, starting from a single EEG trace, quantitative distinctive features characterizing the A phases of the Cyclic Alternating Pattern (CAP). METHODS: The C3-A2 or C4-A1 EEG leads of the night recording of eight healthy adult subjects were used for this analysis. CAP was scored by an expert and the portions relative to NREM were selected. Nine descriptors were computed: band descriptors (low delta, high delta, theta, alpha, sigma and beta); Hjorth activity in the low delta and high delta bands; differential variance of the EEG signal. The information content of each descriptor in recognizing the A phases was evaluated through the computation of the ROC curves and the statistics sensitivity, specificity and accuracy. RESULTS: The ROC curves show that all the descriptors have a certain significance in characterizing A phases. The average accuracy obtained by thresholding the descriptors ranges from 59.89 (sigma descriptor) to 72.44 (differential EEG variance). CONCLUSIONS: The results show that it is possible to attribute a significant quantitative value to the information content of the descriptors. SIGNIFICANCE: This study gives a mathematical confirm to the features of CAP generally described qualitatively, and puts the bases for the creation of automatic detection methods.

摘要

目的:本研究旨在从单个 EEG 轨迹中识别出定性地描述周期性交替模式(CAP)A 阶段的定量特征。

方法:该分析使用了 8 名健康成年受试者夜间记录的 C3-A2 或 C4-A1 EEG 导联。CAP 由专家评分,并选择与 NREM 相关的部分。计算了 9 个描述符:频带描述符(低 delta、高 delta、theta、alpha、sigma 和 beta);低 delta 和高 delta 频带中的 Hjorth 活动;脑电图信号的差分方差。通过计算 ROC 曲线和统计灵敏度、特异性和准确性,评估了每个描述符识别 A 相的信息含量。

结果:ROC 曲线表明,所有描述符在表征 A 相方面都具有一定的意义。通过对描述符进行阈值处理获得的平均准确性范围从 59.89(sigma 描述符)到 72.44(差分 EEG 方差)。

结论:结果表明,有可能为描述符的信息内容赋予重要的定量值。

意义:本研究从数学上证实了 CAP 的特征,这些特征通常是定性描述的,为自动检测方法的创建奠定了基础。

相似文献

[1]
Characterization of A phases during the cyclic alternating pattern of sleep.

Clin Neurophysiol. 2011-3-24

[2]
All-night EEG power spectral analysis of the cyclic alternating pattern components in young adult subjects.

Clin Neurophysiol. 2005-10

[3]
All-night EEG power spectral analysis of the cyclic alternating pattern at different ages.

Clin Neurophysiol. 2009-2

[4]
Topographic mapping of the spectral components of the cyclic alternating pattern (CAP).

Sleep Med. 2005-1

[5]
Sleep cyclic alternating pattern analysis in healthy children during the first year of life: a daytime polysomnographic study.

Brain Dev. 2011-5

[6]
EEG segmentation for improving automatic CAP detection.

Clin Neurophysiol. 2013-5-1

[7]
Sleep bruxism and sleep arousal: an experimental challenge to assess the role of cyclic alternating pattern.

J Oral Rehabil. 2011-2-7

[8]
Sleepwalking, a disorder of NREM sleep instability.

Sleep Med. 2006-3

[9]
Automatic sleep scoring: a search for an optimal combination of measures.

Artif Intell Med. 2011-7-13

[10]
A new quantitative automatic method for the measurement of non-rapid eye movement sleep electroencephalographic amplitude variability.

J Sleep Res. 2011-11-16

引用本文的文献

[1]
The dynamics of cyclic-periodic phenomena during non-rapid and rapid eye movement sleep.

J Sleep Res. 2025-4

[2]
Towards automatic EEG cyclic alternating pattern analysis: a systematic review.

Biomed Eng Lett. 2023-7-19

[3]
Multiple Time Series Fusion Based on LSTM: An Application to CAP A Phase Classification Using EEG.

Int J Environ Res Public Health. 2022-9-1

[4]
Heuristic Optimization of Deep and Shallow Classifiers: An Application for Electroencephalogram Cyclic Alternating Pattern Detection.

Entropy (Basel). 2022-5-13

[5]
Automated Characterization of Cyclic Alternating Pattern Using Wavelet-Based Features and Ensemble Learning Techniques with EEG Signals.

Diagnostics (Basel). 2021-7-30

[6]
Sleep Macrostructure and NREM Sleep Instability Analysis in Pediatric Developmental Coordination Disorder.

Int J Environ Res Public Health. 2019-10-2

[7]
Correlation of sleep microstructure with daytime sleepiness and cognitive function in young and middle-aged adults with obstructive sleep apnea syndrome.

Eur Arch Otorhinolaryngol. 2019-7-1

[8]
Analysis of A-phase transitions during the cyclic alternating pattern under normal sleep.

Med Biol Eng Comput. 2016-1

[9]
Efficient automatic classifiers for the detection of A phases of the cyclic alternating pattern in sleep.

Med Biol Eng Comput. 2012-3-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索