文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于提高自动 CAP 检测的 EEG 分段。

EEG segmentation for improving automatic CAP detection.

机构信息

Politecnico di Milano, Department of Electronics, Information and Bioengineering, P.zza Leonardo da Vinci 32, 20133 Milan, Italy.

出版信息

Clin Neurophysiol. 2013 Sep;124(9):1815-23. doi: 10.1016/j.clinph.2013.04.005. Epub 2013 May 1.


DOI:10.1016/j.clinph.2013.04.005
PMID:23643311
Abstract

OBJECTIVE: The aim of this study is to provide an improved method for the automatic classification of the Cyclic Alternating Pattern (CAP) sleep by applying a segmentation technique to the computation of descriptors from the EEG. METHODS: A dataset of 16 polysomnographic recordings from healthy subjects was employed, and the EEG traces underwent first an automatic isolation of NREM sleep portions by means of an Artificial Neural Network and then a segmentation process based on the Spectral Error Measure. The information content of the descriptors was evaluated by means of ROC curves and compared with that of descriptors obtained without the use of segmentation. Finally, the descriptors were used to train a discriminant function for the automatic classification of CAP phases A. RESULTS: A significant improvement with respect to previous scoring methods in terms of both information content carried by the descriptors and accuracy of the classification was obtained. CONCLUSIONS: EEG segmentation proves to be a useful step in the computation of descriptors for CAP scoring. SIGNIFICANCE: This study provides a complete method for CAP analysis, which is entirely automatic and allows the recognition of A phases with a high accuracy thanks to EEG segmentation.

摘要

目的:本研究旨在提供一种改进的方法,通过将 EEG 描述符的计算应用于分段技术,对周期性交替模式 (CAP) 睡眠进行自动分类。

方法:使用来自健康受试者的 16 个多导睡眠记录数据集,EEG 轨迹首先通过人工神经网络自动隔离非快速眼动睡眠部分,然后根据谱误差度量进行分段。通过 ROC 曲线评估描述符的信息含量,并将其与不使用分段获得的描述符的信息含量进行比较。最后,使用描述符训练判别函数,用于自动分类 CAP 相位 A。

结果:与之前的评分方法相比,在描述符的信息含量和分类的准确性方面都有了显著的提高。

结论:脑电图分段在 CAP 评分的描述符计算中是一个有用的步骤。

意义:本研究提供了一种完整的 CAP 分析方法,它完全自动化,并通过 EEG 分段实现了对 A 相位的高精度识别。

相似文献

[1]
EEG segmentation for improving automatic CAP detection.

Clin Neurophysiol. 2013-5-1

[2]
Characterization of A phases during the cyclic alternating pattern of sleep.

Clin Neurophysiol. 2011-3-24

[3]
Efficient automatic classifiers for the detection of A phases of the cyclic alternating pattern in sleep.

Med Biol Eng Comput. 2012-3-20

[4]
A new quantitative automatic method for the measurement of non-rapid eye movement sleep electroencephalographic amplitude variability.

J Sleep Res. 2011-11-16

[5]
Assessment of Itakura Distance as a valuable feature for computer-aided classification of sleep stages.

Annu Int Conf IEEE Eng Med Biol Soc. 2007

[6]
All-night EEG power spectral analysis of the cyclic alternating pattern components in young adult subjects.

Clin Neurophysiol. 2005-10

[7]
Automatic detection of a phases of the cyclic alternating pattern during sleep.

Annu Int Conf IEEE Eng Med Biol Soc. 2010

[8]
Visual and automatic cyclic alternating pattern (CAP) scoring: inter-rater reliability study.

Arq Neuropsiquiatr. 2006-9

[9]
A general automatic method for the analysis of NREM sleep microstructure.

Sleep Med. 2004-11

[10]
Visual and automatic classification of the cyclic alternating pattern in electroencephalography during sleep.

Braz J Med Biol Res. 2019-2-25

引用本文的文献

[1]
Multimodal assessment of sleep-wake perception in insomnia disorder.

Sci Rep. 2025-6-5

[2]
Efficient system for classifying cyclic alternating pattern phases in sleep.

Cogn Neurodyn. 2025-12

[3]
Deep-Learning-Based Classification of Cyclic-Alternating-Pattern Sleep Phases.

Entropy (Basel). 2023-9-28

[4]
Towards automatic EEG cyclic alternating pattern analysis: a systematic review.

Biomed Eng Lett. 2023-7-19

[5]
L-Tetrolet Pattern-Based Sleep Stage Classification Model Using Balanced EEG Datasets.

Diagnostics (Basel). 2022-10-16

[6]
Multiple Time Series Fusion Based on LSTM: An Application to CAP A Phase Classification Using EEG.

Int J Environ Res Public Health. 2022-9-1

[7]
Heuristic Optimization of Deep and Shallow Classifiers: An Application for Electroencephalogram Cyclic Alternating Pattern Detection.

Entropy (Basel). 2022-5-13

[8]
Automatic Cyclic Alternating Pattern (CAP) analysis: Local and multi-trace approaches.

PLoS One. 2021

[9]
Biologically inspired intelligent decision making: a commentary on the use of artificial neural networks in bioinformatics.

Bioengineered. 2014

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索