Politecnico di Milano, Department of Electronics, Information and Bioengineering, P.zza Leonardo da Vinci 32, 20133 Milan, Italy.
Clin Neurophysiol. 2013 Sep;124(9):1815-23. doi: 10.1016/j.clinph.2013.04.005. Epub 2013 May 1.
OBJECTIVE: The aim of this study is to provide an improved method for the automatic classification of the Cyclic Alternating Pattern (CAP) sleep by applying a segmentation technique to the computation of descriptors from the EEG. METHODS: A dataset of 16 polysomnographic recordings from healthy subjects was employed, and the EEG traces underwent first an automatic isolation of NREM sleep portions by means of an Artificial Neural Network and then a segmentation process based on the Spectral Error Measure. The information content of the descriptors was evaluated by means of ROC curves and compared with that of descriptors obtained without the use of segmentation. Finally, the descriptors were used to train a discriminant function for the automatic classification of CAP phases A. RESULTS: A significant improvement with respect to previous scoring methods in terms of both information content carried by the descriptors and accuracy of the classification was obtained. CONCLUSIONS: EEG segmentation proves to be a useful step in the computation of descriptors for CAP scoring. SIGNIFICANCE: This study provides a complete method for CAP analysis, which is entirely automatic and allows the recognition of A phases with a high accuracy thanks to EEG segmentation.
目的:本研究旨在提供一种改进的方法,通过将 EEG 描述符的计算应用于分段技术,对周期性交替模式 (CAP) 睡眠进行自动分类。
方法:使用来自健康受试者的 16 个多导睡眠记录数据集,EEG 轨迹首先通过人工神经网络自动隔离非快速眼动睡眠部分,然后根据谱误差度量进行分段。通过 ROC 曲线评估描述符的信息含量,并将其与不使用分段获得的描述符的信息含量进行比较。最后,使用描述符训练判别函数,用于自动分类 CAP 相位 A。
结果:与之前的评分方法相比,在描述符的信息含量和分类的准确性方面都有了显著的提高。
结论:脑电图分段在 CAP 评分的描述符计算中是一个有用的步骤。
意义:本研究提供了一种完整的 CAP 分析方法,它完全自动化,并通过 EEG 分段实现了对 A 相位的高精度识别。
Clin Neurophysiol. 2013-5-1
Clin Neurophysiol. 2011-3-24
Med Biol Eng Comput. 2012-3-20
Annu Int Conf IEEE Eng Med Biol Soc. 2007
Annu Int Conf IEEE Eng Med Biol Soc. 2010
Arq Neuropsiquiatr. 2006-9
Braz J Med Biol Res. 2019-2-25
Sci Rep. 2025-6-5
Cogn Neurodyn. 2025-12
Entropy (Basel). 2023-9-28
Biomed Eng Lett. 2023-7-19
Diagnostics (Basel). 2022-10-16
Int J Environ Res Public Health. 2022-9-1