Suppr超能文献

分子间相互作用动力学的纳米医学相关性——来自溶菌酶和胰岛素的实例

Nanomedical Relevance of the Intermolecular Interaction Dynamics-Examples from Lysozymes and Insulins.

作者信息

Zhang Ruiyan, Zhang Ning, Mohri Marzieh, Wu Lisha, Eckert Thomas, Krylov Vadim B, Antosova Andrea, Ponikova Slavomira, Bednarikova Zuzana, Markart Philipp, Günther Andreas, Norden Bengt, Billeter Martin, Schauer Roland, Scheidig Axel J, Ratha Bhisma N, Bhunia Anirban, Hesse Karsten, Enani Mushira Abdelaziz, Steinmeyer Jürgen, Petridis Athanasios K, Kozar Tibor, Gazova Zuzana, Nifantiev Nikolay E, Siebert Hans-Christian

机构信息

Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China.

RI-B-NT Research Institute of Bioinformatics and Nanotechnology, Franziusallee 177, 24148 Kiel, Germany.

出版信息

ACS Omega. 2019 Feb 28;4(2):4206-4220. doi: 10.1021/acsomega.8b02471. Epub 2019 Feb 27.

Abstract

Insulin and lysozyme share the common features of being prone to aggregate and having biomedical importance. Encapsulating lysozyme and insulin in micellar nanoparticles probably would prevent aggregation and facilitate oral drug delivery. Despite the vivid structural knowledge of lysozyme and insulin, the environment-dependent oligomerization (dimer, trimer, and multimer) and associated structural dynamics remain elusive. The knowledge of the intra- and intermolecular interaction profiles has cardinal importance for the design of encapsulation protocols. We have employed various biophysical methods such as NMR spectroscopy, X-ray crystallography, Thioflavin T fluorescence, and atomic force microscopy in conjugation with molecular modeling to improve the understanding of interaction dynamics during homo-oligomerization of lysozyme (human and hen egg) and insulin (porcine, human, and glargine). The results obtained depict the atomistic intra- and intermolecular interaction details of the homo-oligomerization and confirm the propensity to form fibrils. Taken together, the data accumulated and knowledge gained will further facilitate nanoparticle design and production with insulin or lysozyme-related protein encapsulation.

摘要

胰岛素和溶菌酶具有易于聚集和具有生物医学重要性的共同特征。将溶菌酶和胰岛素封装在胶束纳米颗粒中可能会防止聚集并促进口服药物递送。尽管对溶菌酶和胰岛素有清晰的结构知识,但环境依赖性寡聚化(二聚体、三聚体和多聚体)及相关的结构动力学仍然难以捉摸。分子内和分子间相互作用概况的知识对于封装方案的设计至关重要。我们采用了各种生物物理方法,如核磁共振光谱、X射线晶体学、硫黄素T荧光和原子力显微镜,并结合分子建模,以增进对溶菌酶(人源和鸡卵源)和胰岛素(猪源、人源和甘精胰岛素)同源寡聚化过程中相互作用动力学的理解。所获得的结果描绘了同源寡聚化的原子水平分子内和分子间相互作用细节,并证实了形成原纤维的倾向。综上所述,积累的数据和获得的知识将进一步促进与胰岛素或溶菌酶相关蛋白封装的纳米颗粒的设计和生产。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72f7/6647809/b7c6e58c37dd/ao-2018-024718_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验