Suppr超能文献

工程大肠杆菌中高产量白藜芦醇的生产。

High-yield resveratrol production in engineered Escherichia coli.

机构信息

Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.

出版信息

Appl Environ Microbiol. 2011 May;77(10):3451-60. doi: 10.1128/AEM.02186-10. Epub 2011 Mar 25.

Abstract

Plant polyphenols have been the subject of several recent scientific investigations since many of the molecules in this class have been found to be highly active in the human body, with a plethora of health-promoting activities against a variety of diseases, including heart disease, diabetes, and cancer, and with even the potential to slow aging. Further development of these potent natural therapeutics hinges on the formation of robust industrial production platforms designed using specifically selected as well as engineered protein sources along with the construction of optimal expression platforms. In this work, we first report the investigation of various stilbene synthases from an array of plant species considering structure-activity relationships, their expression efficiency in microorganisms, and their ability to synthesize resveratrol. Second, we looked into the construct environment of recombinantly expressed stilbene synthases, including different promoters, construct designs, and host strains, to create an Escherichia coli strain capable of producing superior resveratrol titers sufficient for commercial usage. Further improvement of metabolic capabilities of the recombinant strain aimed at improving the intracellular malonyl-coenzyme A pool, a resveratrol precursor, resulted in a final improved titer of 2.3 g/liter resveratrol.

摘要

植物多酚类化合物是近年来科学研究的热点,因为该类化合物中的许多分子在人体内具有高度的活性,对多种疾病(包括心脏病、糖尿病和癌症)具有多种促进健康的作用,甚至有延缓衰老的潜力。这些有效天然疗法的进一步发展取决于使用经过特别选择和工程化的蛋白质来源构建强大的工业生产平台,以及构建最佳表达平台。在这项工作中,我们首先报告了对来自多种植物物种的各种芪合酶的研究,考虑了结构-活性关系、它们在微生物中的表达效率以及它们合成白藜芦醇的能力。其次,我们研究了重组表达芪合酶的构建环境,包括不同的启动子、构建设计和宿主菌株,以创建一种能够产生足够高商业用途白藜芦醇滴度的大肠杆菌菌株。旨在提高白藜芦醇前体细胞内丙二酰辅酶 A 池的代谢能力的重组菌株的进一步改进,最终使白藜芦醇的产量提高到 2.3 g/L。

相似文献

1
High-yield resveratrol production in engineered Escherichia coli.
Appl Environ Microbiol. 2011 May;77(10):3451-60. doi: 10.1128/AEM.02186-10. Epub 2011 Mar 25.
2
Metabolic engineering of Escherichia coli for the synthesis of the plant polyphenol pinosylvin.
Appl Environ Microbiol. 2015 Feb;81(3):840-9. doi: 10.1128/AEM.02966-14. Epub 2014 Nov 14.
7
Production of resveratrol in recombinant microorganisms.
Appl Environ Microbiol. 2006 Aug;72(8):5670-2. doi: 10.1128/AEM.00609-06.
8
Efficient de novo synthesis of resveratrol by metabolically engineered Escherichia coli.
J Ind Microbiol Biotechnol. 2017 Jul;44(7):1083-1095. doi: 10.1007/s10295-017-1937-9. Epub 2017 Mar 21.
9
Production of pinostilbene compounds by the expression of resveratrol O-methyltransferase genes in Escherichia coli.
Enzyme Microb Technol. 2014 Jan 10;54:8-14. doi: 10.1016/j.enzmictec.2013.09.005. Epub 2013 Sep 21.
10
Construction, expression, and characterization of Arabidopsis thaliana 4CL and Arachis hypogaea RS fusion gene 4CL::RS in Escherichia coli.
World J Microbiol Biotechnol. 2015 Sep;31(9):1379-85. doi: 10.1007/s11274-015-1889-z. Epub 2015 Jun 20.

引用本文的文献

1
2
Biotechnological Breakthroughs in Resveratrol Synthesis and Health Advancements.
Curr Pharm Biotechnol. 2025;26(10):1499-1513. doi: 10.2174/0113892010297228240612112520.
3
De Novo Synthesis of Resveratrol from Sucrose by Metabolically Engineered .
Biomolecules. 2024 Jun 16;14(6):712. doi: 10.3390/biom14060712.
5
Advances in Flavonoid Research: Sources, Biological Activities, and Developmental Prospectives.
Curr Issues Mol Biol. 2024 Mar 26;46(4):2884-2925. doi: 10.3390/cimb46040181.
6
Stilbenes: a journey from folklore to pharmaceutical innovation.
Arch Microbiol. 2024 Apr 22;206(5):229. doi: 10.1007/s00203-024-03939-z.
7
A type III polyketide synthase cluster in the phylum Planctomycetota is involved in alkylresorcinol biosynthesis.
Appl Microbiol Biotechnol. 2024 Feb 26;108(1):239. doi: 10.1007/s00253-024-13065-x.
8
Denovo production of resveratrol by engineered Saccharomyces cerevisiae W303-1a using pretreated Gracilaria corticata extracts.
Biotechnol Lett. 2024 Feb;46(1):19-28. doi: 10.1007/s10529-023-03441-4. Epub 2023 Nov 21.
9
Membrane manipulation by free fatty acids improves microbial plant polyphenol synthesis.
Nat Commun. 2023 Sep 12;14(1):5619. doi: 10.1038/s41467-023-40947-x.
10
Multi-Level Optimization and Strategies in Microbial Biotransformation of Nature Products.
Molecules. 2023 Mar 14;28(6):2619. doi: 10.3390/molecules28062619.

本文引用的文献

1
SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1.
J Biol Chem. 2010 Mar 12;285(11):8340-51. doi: 10.1074/jbc.M109.088682. Epub 2010 Jan 8.
2
Resveratrol is not a direct activator of SIRT1 enzyme activity.
Chem Biol Drug Des. 2009 Dec;74(6):619-24. doi: 10.1111/j.1747-0285.2009.00901.x. Epub 2009 Oct 20.
3
Increased malonyl coenzyme A biosynthesis by tuning the Escherichia coli metabolic network and its application to flavanone production.
Appl Environ Microbiol. 2009 Sep;75(18):5831-9. doi: 10.1128/AEM.00270-09. Epub 2009 Jul 24.
4
Antioxidant and anti-inflammatory properties of tomato fruits synthesizing different amounts of stilbenes.
Plant Biotechnol J. 2009 Jun;7(5):422-9. doi: 10.1111/j.1467-7652.2009.00409.x.
6
Engineering of plant-specific phenylpropanoids biosynthesis in Streptomyces venezuelae.
J Biotechnol. 2009 May 20;141(3-4):181-8. doi: 10.1016/j.jbiotec.2009.03.013. Epub 2009 Mar 31.
8
Strain improvement of recombinant Escherichia coli for efficient production of plant flavonoids.
Mol Pharm. 2008 Mar-Apr;5(2):257-65. doi: 10.1021/mp7001472. Epub 2008 Mar 12.
9
Dose translation from animal to human studies revisited.
FASEB J. 2008 Mar;22(3):659-61. doi: 10.1096/fj.07-9574LSF. Epub 2007 Oct 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验