Klass Sarah H, Wesselkamper Mia, Cowan Aidan E, Lee Namil, Lanclos Nathan, Cheong Seokjung, Wang Zilong, Chen Yan, Gin Jennifer W, Petzold Christopher J, Keasling Jay D
Joint BioEnergy Institute, Emeryville, CA, USA.
Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
Nat Chem Biol. 2025 Jun 11. doi: 10.1038/s41589-025-01911-6.
Heterologous expression of polyketide synthase (PKS) genes in Escherichia coli has enabled the production of various valuable natural and synthetic products. However, the limited availability of malonyl-CoA (M-CoA) in E. coli remains a substantial impediment to high-titer polyketide production. Here we address this limitation by disrupting the native M-CoA biosynthetic pathway and introducing an orthogonal pathway comprising a malonate transporter and M-CoA ligase, enabling efficient M-CoA biosynthesis under malonate supplementation. This approach substantially increases M-CoA levels, enhancing fatty acid and polyketide titers while reducing the promiscuous activity of PKSs toward undesired acyl-CoA substrates. Subsequent adaptive laboratory evolution of these strains provides insights into M-CoA regulation and identifies mutations that further boost M-CoA and polyketide production. This strategy improves E. coli as a host for polyketide biosynthesis and advances understanding of M-CoA metabolism in microbial systems.
聚酮合酶(PKS)基因在大肠杆菌中的异源表达使得能够生产各种有价值的天然和合成产物。然而,大肠杆菌中丙二酰辅酶A(M-CoA)的可用性有限,仍然是高滴度聚酮化合物生产的一个重大障碍。在这里,我们通过破坏天然的M-CoA生物合成途径并引入一个由丙二酸转运体和M-CoA连接酶组成的正交途径来解决这一限制,从而在补充丙二酸的情况下实现高效的M-CoA生物合成。这种方法显著提高了M-CoA水平,提高了脂肪酸和聚酮化合物的滴度,同时降低了PKS对不需要的酰基辅酶A底物的混杂活性。随后对这些菌株进行适应性实验室进化,为M-CoA调节提供了见解,并鉴定出进一步提高M-CoA和聚酮化合物产量的突变。该策略改进了大肠杆菌作为聚酮化合物生物合成宿主的性能,并推进了对微生物系统中M-CoA代谢的理解。