Department of Radiology, University of Washington, Seattle, WA 98195, USA.
Phys Med Biol. 2011 Apr 21;56(8):2481-98. doi: 10.1088/0031-9155/56/8/010. Epub 2011 Mar 25.
Dynamic PET image reconstruction is a challenging issue due to the low SNR and the large quantity of spatio-temporal data. We propose a robust state-space image reconstruction (SSIR) framework for activity reconstruction in dynamic PET. Unlike statistically-based frame-by-frame methods, tracer kinetic modeling is incorporated to provide physiological guidance for the reconstruction, harnessing the temporal information of the dynamic data. Dynamic reconstruction is formulated in a state-space representation, where a compartmental model describes the kinetic processes in a continuous-time system equation, and the imaging data are expressed in a discrete measurement equation. Tracer activity concentrations are treated as the state variables, and are estimated from the dynamic data. Sampled-data H(∞) filtering is adopted for robust estimation. H(∞) filtering makes no assumptions on the system and measurement statistics, and guarantees bounded estimation error for finite-energy disturbances, leading to robust performance for dynamic data with low SNR and/or errors. This alternative reconstruction approach could help us to deal with unpredictable situations in imaging (e.g. data corruption from failed detector blocks) or inaccurate noise models. Experiments on synthetic phantom and patient PET data are performed to demonstrate feasibility of the SSIR framework, and to explore its potential advantages over frame-by-frame statistical reconstruction approaches.
动态 PET 图像重建是一个具有挑战性的问题,因为其信噪比低,且存在大量时空数据。我们提出了一种用于动态 PET 中活性重建的稳健状态空间图像重建 (SSIR) 框架。与基于统计的逐帧方法不同,示踪剂动力学建模被纳入其中,为重建提供生理指导,利用动态数据的时间信息。动态重建采用状态空间表示形式,其中房室模型在连续时间系统方程中描述动力学过程,而成像数据则在离散测量方程中表示。示踪剂活性浓度被视为状态变量,并从动态数据中进行估计。采用采样数据 H(∞)滤波进行稳健估计。H(∞)滤波不对系统和测量统计做出任何假设,并保证有限能量干扰的有界估计误差,从而为具有低 SNR 和/或误差的动态数据提供稳健的性能。这种替代的重建方法可以帮助我们应对成像中的不可预测情况(例如来自故障探测器块的数据损坏)或不准确的噪声模型。通过对合成幻影和患者 PET 数据进行实验,验证了 SSIR 框架的可行性,并探索了其相对于逐帧统计重建方法的潜在优势。