Kotasidis F A, Mehranian A, Zaidi H
Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland. Wolfson Molecular Imaging Centre, MAHSC, University of Manchester, M20 3LJ, Manchester, UK.
Phys Med Biol. 2016 May 7;61(9):3443-71. doi: 10.1088/0031-9155/61/9/3443. Epub 2016 Apr 6.
Kinetic parameter estimation in dynamic PET suffers from reduced accuracy and precision when parametric maps are estimated using kinetic modelling following image reconstruction of the dynamic data. Direct approaches to parameter estimation attempt to directly estimate the kinetic parameters from the measured dynamic data within a unified framework. Such image reconstruction methods have been shown to generate parametric maps of improved precision and accuracy in dynamic PET. However, due to the interleaving between the tomographic and kinetic modelling steps, any tomographic or kinetic modelling errors in certain regions or frames, tend to spatially or temporally propagate. This results in biased kinetic parameters and thus limits the benefits of such direct methods. Kinetic modelling errors originate from the inability to construct a common single kinetic model for the entire field-of-view, and such errors in erroneously modelled regions could spatially propagate. Adaptive models have been used within 4D image reconstruction to mitigate the problem, though they are complex and difficult to optimize. Tomographic errors in dynamic imaging on the other hand, can originate from involuntary patient motion between dynamic frames, as well as from emission/transmission mismatch. Motion correction schemes can be used, however, if residual errors exist or motion correction is not included in the study protocol, errors in the affected dynamic frames could potentially propagate either temporally, to other frames during the kinetic modelling step or spatially, during the tomographic step. In this work, we demonstrate a new strategy to minimize such error propagation in direct 4D image reconstruction, focusing on the tomographic step rather than the kinetic modelling step, by incorporating time-of-flight (TOF) within a direct 4D reconstruction framework. Using ever improving TOF resolutions (580 ps, 440 ps, 300 ps and 160 ps), we demonstrate that direct 4D TOF image reconstruction can substantially prevent kinetic parameter error propagation either from erroneous kinetic modelling, inter-frame motion or emission/transmission mismatch. Furthermore, we demonstrate the benefits of TOF in parameter estimation when conventional post-reconstruction (3D) methods are used and compare the potential improvements to direct 4D methods. Further improvements could possibly be achieved in the future by combining TOF direct 4D image reconstruction with adaptive kinetic models and inter-frame motion correction schemes.
在动态正电子发射断层扫描(PET)中,当在动态数据图像重建后使用动力学模型估计参数图时,动力学参数估计的准确性和精度会降低。直接参数估计方法试图在统一框架内从测量的动态数据中直接估计动力学参数。这种图像重建方法已被证明能在动态PET中生成精度和准确性更高的参数图。然而,由于断层成像和动力学建模步骤相互交织,某些区域或帧中的任何断层成像或动力学建模误差往往会在空间或时间上传播。这会导致动力学参数有偏差,从而限制了此类直接方法的优势。动力学建模误差源于无法为整个视野构建一个通用的单一动力学模型,并且在错误建模区域中的此类误差可能会在空间上传播。自适应模型已被用于四维图像重建以减轻该问题,不过它们很复杂且难以优化。另一方面,动态成像中的断层成像误差可能源于动态帧之间患者的非自愿运动,以及发射/透射不匹配。可以使用运动校正方案,但是,如果存在残余误差或研究方案中未包括运动校正,受影响的动态帧中的误差可能会在时间上传播到动力学建模步骤中的其他帧,或者在断层成像步骤中在空间上传播。在这项工作中,我们展示了一种新策略,通过在直接四维重建框架中纳入飞行时间(TOF),将这种误差传播在直接四维图像重建中降至最低,重点关注断层成像步骤而非动力学建模步骤。使用不断提高的TOF分辨率(580 ps、440 ps、300 ps和160 ps),我们证明直接四维TOF图像重建可以大幅防止动力学参数误差因错误的动力学建模、帧间运动或发射/透射不匹配而传播。此外,我们展示了在使用传统重建后(三维)方法时TOF在参数估计中的优势,并将潜在改进与直接四维方法进行比较。未来通过将TOF直接四维图像重建与自适应动力学模型和帧间运动校正方案相结合,可能会实现进一步的改进。