Suppr超能文献

肠道神经系统中的S-亚硝基硫醇信号:从“老大哥”身上学到的经验

S-nitrosothiol signals in the enteric nervous system: lessons learnt from big brother.

作者信息

Savidge Tor C

机构信息

Division of Gastroenterology and Hepatology, The University of Texas Medical Branch Galveston, TX, USA.

出版信息

Front Neurosci. 2011 Mar 9;5:31. doi: 10.3389/fnins.2011.00031. eCollection 2011.

Abstract

Nitric oxide (NO) is a functionally important neurotransmitter signaling molecule generated by mammalian and bacterial nitric oxide synthases (NOS), and by chemical conversion of dietary nitrite in the gastrointestinal (GI) tract. Neuronal NOS (nNOS) is the most abundant isoenzyme in the enteric nervous system, and targeted deletion in transgenic mice has clearly demonstrated its importance in normal gut function. Enteric neuropathy is also often associated with abnormal NO production, for example in achalasia and diabetic gastroparesis. Not surprisingly therefore, aberrant nNOS activity is widely implicated in enteric disease, and represents a potential molecular target for therapeutic intervention. One physiological signaling mechanism of NO bioactivity is through chemical reaction with the heme center of guanylyl cyclase, resulting in the conversion of cGMP from GTP. This second messenger nucleotide signal activates cGMP-dependent protein kinases, phosphodiesterases, and ion channels, and is implicated in the neuronal control of GI function. However, few studies in the GI tract have fully related NO bioactivity with specific molecular targets of NO-derived signals. In the central nervous system (CNS), it is now increasingly appreciated that NO bioactivity is often actively transduced via S-nitrosothiol (SNO) signals rather than via activation of guanylyl cyclase. Moreover, aberrant S-nitrosylation of specific molecular targets is implicated in CNS pathology. S-nitrosylation refers to the post-translational modification of a protein cysteine thiol by NO, forming an endogenous SNO. Because cysteine residues are often key regulators of protein function, S-nitrosylation represents a physiologically important signaling mechanism analogous to other post-translational modifications, such as O-phosphorylation. This article provides an overview of how neurotransmitter NO is produced by nNOS as this represents the most prominent and well defined source of SNO production in the enteric nervous system. Further, it provides a perspective of how S-nitrosylation signals derived from multiple diverse sources may potentially transduce NO bioactivity in the GI tract. Possible lessons that might be learnt from the CNS, such as SNO mediated auto-inhibition of nNOS activity and modulation of neuronal cell death, are also explored as these may have pathophysiological relevance in enteric neuropathy. Thus, S-nitrosylation may mediate previously underappreciated NO-derived signals in the enteric nervous system that regulate homeostatic gut functions and disease susceptibility.

摘要

一氧化氮(NO)是一种功能上重要的神经递质信号分子,由哺乳动物和细菌的一氧化氮合酶(NOS)产生,也可通过胃肠道(GI)中膳食亚硝酸盐的化学转化生成。神经元型一氧化氮合酶(nNOS)是肠神经系统中最丰富的同工酶,转基因小鼠中的靶向缺失已清楚地证明了其在正常肠道功能中的重要性。肠神经病变也常与一氧化氮生成异常有关,例如在贲门失弛缓症和糖尿病胃轻瘫中。因此,毫不奇怪,异常的nNOS活性广泛涉及肠道疾病,并代表了治疗干预的潜在分子靶点。NO生物活性的一种生理信号传导机制是通过与鸟苷酸环化酶的血红素中心发生化学反应,从而将cGMP从GTP转化而来。这种第二信使核苷酸信号激活cGMP依赖性蛋白激酶、磷酸二酯酶和离子通道,并参与胃肠道功能的神经控制。然而,胃肠道中很少有研究将NO生物活性与NO衍生信号的特定分子靶点完全联系起来。在中枢神经系统(CNS)中,现在越来越认识到NO生物活性通常通过S-亚硝基硫醇(SNO)信号而非通过鸟苷酸环化酶的激活来积极转导。此外,特定分子靶点的异常S-亚硝基化与中枢神经系统病理学有关。S-亚硝基化是指蛋白质半胱氨酸硫醇通过NO进行的翻译后修饰,形成内源性SNO。由于半胱氨酸残基通常是蛋白质功能的关键调节因子,S-亚硝基化代表了一种类似于其他翻译后修饰(如O-磷酸化)的生理重要信号传导机制。本文概述了nNOS如何产生神经递质NO,因为这是肠神经系统中SNO产生的最突出且定义明确的来源。此外,本文还探讨了来自多种不同来源的S-亚硝基化信号如何可能在胃肠道中转导NO生物活性。还探讨了可能从中枢神经系统中学到的经验教训,例如SNO介导的nNOS活性自抑制和神经元细胞死亡的调节,因为这些可能在肠神经病变中具有病理生理学相关性。因此,S-亚硝基化可能介导肠神经系统中以前未被充分认识的NO衍生信号,这些信号调节肠道稳态功能和疾病易感性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05b0/3058138/dfc27be45483/fnins-05-00031-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验