Suppr超能文献

αCP2 聚(C)结合蛋白是非洲爪蟾细胞质多聚腺苷酸化的非典型因子。

The poly(rC)-binding protein alphaCP2 is a noncanonical factor in X. laevis cytoplasmic polyadenylation.

机构信息

Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.

出版信息

RNA. 2011 May;17(5):944-56. doi: 10.1261/rna.2587411. Epub 2011 Mar 28.

Abstract

Post-transcriptional control of mRNA stability and translation is central to multiple developmental pathways. This control can be linked to cytoplasmic polyadenylation in certain settings. In maturing Xenopus oocytes, specific mRNAs are targeted for polyadenylation via recruitment of the Cytoplasmic Polyadenylation Element (CPE) binding protein (CPEB) to CPE(s) within the 3' UTR. Cytoplasmic polyadenylation is also critical to early embryonic events, although corresponding determinants are less defined. Here, we demonstrate that the Xenopus ortholog of the poly(rC) binding protein αCP2 can recruit cytoplasmic poly(A) polymerase activity to mRNAs in Xenopus post-fertilization embryos, and that this recruitment relies on cis sequences recognized by αCP2. We find that the hα-globin 3' UTR, a validated mammalian αCP2 target, constitutes an effective target for cytoplasmic polyadenylation in Xenopus embryos, but not during Xenopus oocyte maturation. We further demonstrate that the cytoplasmic polyadenylation activity is dependent on the action of the C-rich αCP-binding site in conjunction with the adjacent AAUAAA. Consistent with its ability to target mRNA for poly(A) addition, we find that XαCP2 associates with core components of the Xenopus cytoplasmic polyadenylation complex, including the cytoplasmic poly(A) polymerase XGLD2. Furthermore, we observe that the C-rich αCP-binding site can robustly enhance the activity of a weak canonical oocyte maturation CPE in early embryos, possibly via a direct interaction between XαCP2 and CPEB1. These studies establish XαCP2 as a novel cytoplasmic polyadenylation trans factor, indicate that C-rich sequences can function as noncanonical cytoplasmic polyadenylation elements, and expand our understanding of the complexities underlying cytoplasmic polyadenylation in specific developmental settings.

摘要

mRNA 稳定性和翻译的转录后调控是多种发育途径的核心。这种调控可以与某些情况下的细胞质多聚腺苷酸化相关联。在成熟的非洲爪蟾卵母细胞中,通过细胞质多聚腺苷酸化元件(CPE)结合蛋白(CPEB)与 3'UTR 中的 CPE(s)结合,特定的 mRNA 被靶向进行多聚腺苷酸化。细胞质多聚腺苷酸化对早期胚胎事件也至关重要,尽管相应的决定因素不太明确。在这里,我们证明了非洲爪蟾多聚(rC)结合蛋白αCP2 的同源物可以将细胞质多聚(A)聚合酶活性募集到非洲爪蟾受精后胚胎的 mRNA 上,并且这种募集依赖于由αCP2 识别的顺式序列。我们发现,经过验证的哺乳动物αCP2 靶标 hα-珠蛋白 3'UTR 在非洲爪蟾胚胎中构成了细胞质多聚腺苷酸化的有效靶标,但在非洲爪蟾卵母细胞成熟过程中不是。我们进一步证明,细胞质多聚腺苷酸化活性依赖于 C 丰富的αCP 结合位点与相邻的 AAUAAA 的共同作用。与它将 mRNA 靶向多聚(A)添加的能力一致,我们发现 XαCP2 与包括细胞质多聚(A)聚合酶 XGLD2 在内的非洲爪蟾细胞质多聚腺苷酸化复合物的核心成分相关联。此外,我们观察到 C 丰富的αCP 结合位点可以强有力地增强早期胚胎中弱的经典卵母细胞成熟 CPE 的活性,可能是通过 XαCP2 和 CPEB1 之间的直接相互作用。这些研究确立了 XαCP2 作为一种新的细胞质多聚腺苷酸化转因子,表明 C 丰富序列可以作为非典型的细胞质多聚腺苷酸化元件发挥作用,并扩展了我们对特定发育环境中细胞质多聚腺苷酸化复杂性的理解。

相似文献

1
The poly(rC)-binding protein alphaCP2 is a noncanonical factor in X. laevis cytoplasmic polyadenylation.
RNA. 2011 May;17(5):944-56. doi: 10.1261/rna.2587411. Epub 2011 Mar 28.
5
Xenopus Rbm9 is a novel interactor of XGld2 in the cytoplasmic polyadenylation complex.
FEBS J. 2008 Feb;275(3):490-503. doi: 10.1111/j.1742-4658.2007.06216.x. Epub 2008 Jan 3.
7
RINGO/cdk1 and CPEB mediate poly(A) tail stabilization and translational regulation by ePAB.
Genes Dev. 2007 Oct 15;21(20):2571-9. doi: 10.1101/gad.1593007.
9
Poly(A) polymerase and the regulation of cytoplasmic polyadenylation.
J Biol Chem. 2001 Nov 9;276(45):41810-6. doi: 10.1074/jbc.M103030200. Epub 2001 Sep 10.

引用本文的文献

2
Dicer-2 promotes mRNA activation through cytoplasmic polyadenylation.
RNA. 2018 Apr;24(4):529-539. doi: 10.1261/rna.065417.117. Epub 2018 Jan 9.
3
Controlling the Messenger: Regulated Translation of Maternal mRNAs in Xenopus laevis Development.
Adv Exp Med Biol. 2017;953:49-82. doi: 10.1007/978-3-319-46095-6_2.
4
The STAR protein QKI-7 recruits PAPD4 to regulate post-transcriptional polyadenylation of target mRNAs.
Nucleic Acids Res. 2016 Apr 7;44(6):2475-90. doi: 10.1093/nar/gkw118. Epub 2016 Feb 29.
6
Specificity factors in cytoplasmic polyadenylation.
Wiley Interdiscip Rev RNA. 2013 Jul-Aug;4(4):437-61. doi: 10.1002/wrna.1171.
7
Eif4a3 is required for accurate splicing of the Xenopus laevis ryanodine receptor pre-mRNA.
Dev Biol. 2012 Dec 1;372(1):103-10. doi: 10.1016/j.ydbio.2012.08.013. Epub 2012 Aug 28.

本文引用的文献

1
Developmental timing of mRNA translation--integration of distinct regulatory elements.
Mol Reprod Dev. 2010 Aug;77(8):662-9. doi: 10.1002/mrd.21191.
2
Meiosis requires a translational positive loop where CPEB1 ensues its replacement by CPEB4.
EMBO J. 2010 Jul 7;29(13):2182-93. doi: 10.1038/emboj.2010.111. Epub 2010 Jun 8.
3
Mitotic cell-cycle progression is regulated by CPEB1 and CPEB4-dependent translational control.
Nat Cell Biol. 2010 May;12(5):447-56. doi: 10.1038/ncb2046. Epub 2010 Apr 4.
5
Antagonism between GLD-2 binding partners controls gamete sex.
Dev Cell. 2009 May;16(5):723-33. doi: 10.1016/j.devcel.2009.04.002.
7
CPEB regulation of human cellular senescence, energy metabolism, and p53 mRNA translation.
Genes Dev. 2008 Dec 15;22(24):3449-60. doi: 10.1101/gad.1697808.
8
Translational control by cytoplasmic polyadenylation in Xenopus oocytes.
Biochim Biophys Acta. 2008 Apr;1779(4):217-29. doi: 10.1016/j.bbagrm.2008.02.002. Epub 2008 Feb 14.
9
A combinatorial code for CPE-mediated translational control.
Cell. 2008 Feb 8;132(3):434-48. doi: 10.1016/j.cell.2007.12.038.
10
Preparation and use of interphase Xenopus egg extracts.
Curr Protoc Cell Biol. 2001 May;Chapter 11:Unit 11.10. doi: 10.1002/0471143030.cb1110s09.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验