Basciano Leticia, Nemos Christophe, Foliguet Bernard, de Isla Natalia, de Carvalho Marcelo, Tran Nguyen, Dalloul Ali
Nancy University Medical School (EA 4369) and School of Surgery (NT), 54500 Vandœuvre-lès-Nancy, France.
BMC Cell Biol. 2011 Mar 30;12:12. doi: 10.1186/1471-2121-12-12.
In the bone marrow, hematopietic and mesenchymal stem cells form a unique niche in which the oxygen tension is low. Hypoxia may have a role in maintaining stem cell fate, self renewal and multipotency. However, whereas most studies addressed the effect of transient in vitro exposure of MSC to hypoxia, permanent culture under hypoxia should reflect the better physiological conditions.
Morphologic studies, differentiation and transcriptional profiling experiments were performed on MSC cultured in normoxia (21% O2) versus hypoxia (5% O2) for up to passage 2. Cells at passage 0 and at passage 2 were compared, and those at passage 0 in hypoxia generated fewer and smaller colonies than in normoxia. In parallel, MSC displayed (>4 fold) inhibition of genes involved in DNA metabolism, cell cycle progression and chromosome cohesion whereas transcripts involved in adhesion and metabolism (CD93, ESAM, VWF, PLVAP, ANGPT2, LEP, TCF1) were stimulated. Compared to normoxic cells, hypoxic cells were morphologically undifferentiated and contained less mitochondrias. After this lag phase, cells at passage 2 in hypoxia outgrew the cells cultured in normoxia and displayed an enhanced expression of genes (4-60 fold) involved in extracellular matrix assembly (SMOC2), neural and muscle development (NOG, GPR56, SNTG2, LAMA) and epithelial development (DMKN). This group described herein for the first time was assigned by the Gene Ontology program to "plasticity".
The duration of hypoxemia is a critical parameter in the differentiation capacity of MSC. Even in growth promoting conditions, hypoxia enhanced a genetic program that maintained the cells undifferentiated and multipotent. This condition may better reflect the in vivo gene signature of MSC, with potential implications in regenerative medicine.
在骨髓中,造血干细胞和间充质干细胞形成了一个独特的微环境,其中氧张力较低。缺氧可能在维持干细胞命运、自我更新和多能性方面发挥作用。然而,尽管大多数研究探讨了间充质干细胞短暂体外暴露于缺氧环境的影响,但在缺氧条件下进行永久培养应能更好地反映生理状况。
对在常氧(21% O₂)与缺氧(5% O₂)条件下培养至第2代的间充质干细胞进行了形态学研究、分化及转录谱分析实验。比较了第0代和第2代细胞,第0代处于缺氧环境的细胞形成的集落比在常氧环境中更少、更小。同时,间充质干细胞中参与DNA代谢、细胞周期进程和染色体凝聚的基因受到(>4倍)抑制,而参与黏附及代谢的转录本(CD93、ESAM、VWF、PLVAP、ANGPT2、LEP、TCF1)则受到刺激。与常氧细胞相比,缺氧细胞在形态上未分化,线粒体含量更少。经过这个延迟期后,第2代处于缺氧环境的细胞生长超过了在常氧环境中培养的细胞,并表现出参与细胞外基质组装(SMOC2)、神经和肌肉发育(NOG、GPR56、SNTG2、LAMA)以及上皮发育(DMKN)的基因表达增强(4 - 60倍)。本文首次描述的这一组细胞被基因本体程序归类为“可塑性”。
低氧血症的持续时间是间充质干细胞分化能力的关键参数。即使在促进生长的条件下,缺氧也增强了一个使细胞保持未分化和多能性的基因程序。这种情况可能更好地反映间充质干细胞的体内基因特征,对再生医学具有潜在意义。